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1|Introduction    

Hub Location Problems (HLPs) which are known as "network optimization problems", identify hubs as 

collection and distribution centers [1]. In these problems, less and more direct connections are used to achieve 

the economic interests rather direct relationship between the two points and accordingly, demands with the 

same destination are aggregated and then distributed. 

There are various other applications in the HLPs in addition to telecommunication and transportation 

systems, including production planning, retail management, wholesale management, and healthcare. 

Teo and Shu [2-15] and many other works have been conducted in this field. However, along with the issues 

raised in all of these problems with a wide variety of applications, it should be noted that the disruption and 

revocation of a service flow will impose additional costs in addition to unfulfilled economic goal. The costs 
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include increased direct and indirect costs, intensified dissatisfaction, and undermined system legitimacy [4]. 

Therefore, the reliability of the network communication routes and how to establish hub facilities based on 

reliability is important. However, Snyder et al. [16] have considered the effects of natural disasters, labor 

strikes, or terrorist threats among the factors affecting the reliability. The importance of this issue is increasing 

day by day by growing the industrial society and the increased volume of communications, and the growth of 

scientific research is possible in the field of reliable hub location. Kim and O'kelly [17] were the first ones 

who focused on promoting the reliability of communication routes in the hub location problem and An et al. 

[4] improved the hub facility reliability factor by defining the backup facilities. According to them, given the 

strategic level of HLPs, the solving method is of great importance. Therefore, they proposed two approaches 

of branch and bound and Lagrangian for their model. 

One of these characteristics of the HLPs is the hierarchical structure proposed by Yaman [18], Alumur et al. 

[10] and Korani and Sahraeian [13]. However, multimodal transportation is another important characteristic 

that has been taken today beyond hub problems in the field of macro transportation. Competition in the field 

of accelerated services is one of the key indicators of global trade, led to inefficiencies in specialized and 

individual transportation [19]. Therefore, emphasis on multimodal transportation in hub has also been 

important as can be observed in recent research including Chen et al. [20], Alumur et al. [14], Onyemechi [21], 

SteadieSeifi et al. [22], Hanasusanto et al. [23], Ambrosino and Sciomachen [24], Fazayeli et al. [25] and Huang 

et al. [26]. However, simultaneous emphasis to these three characteristics causes new contingencies that 

should be considered in designing the model. 

Given the complexity and time-consuming nature of the solving process of various problems in the real 

world, researchers have tried to overcome these complexities by creating new methods. One of these methods 

is the Artificial Neural Network (ANN), which is more useful than many models, and this is because of their 

higher level of speed and accuracy [27–29]. By the motivation of developing an alternative model that allows 

for a quick and reliable estimation of site overhead costs, Leśniak and Juszczyk [29] suggested an ANN-based 

regression model which was able to predict the site overhead cost index. 

A new method for quick and accurate estimation and forecasting  iron oxide (FeO) concentration in steel slag 

during discharge process in steelworks was also proposed utilizing two key tools of the ANN and infrared 

imaging [30]. This method has attempted to estimate and predict the value of material physical parameters 

based on the changes in the radiative parameters, which is most relevant to the amount of FeO in steel 

production. 

An ANN model based on the input parameters of random data and strain values obtained from the static test 

was proposed to predict the static load applied on the wing rib [31]. The performance of their proposed ANN 

model has been also evaluated in predicting static load to a degree of accuracy. 

Continuous and permanent monitoring of Particulate Matter (PM) at subway station is of particular 

importance for assessing the exposure level of PM to passengers. In this way, PM variations were predicted 

using ANN for 6 subway stations in Seoul. This ANN model has three inputs of outdoor PM10 

concentrations, ventilation rates, and subway frequencies in the input layer, a hidden layer and an output layer 

[32]. 

Optimizing the design process of asphalt mix in the road construction industry is one of the interesting uses 

of ANN which used by Sebaaly et al. [33] to optimize the asphalt mix design process using past process 

database suggesting a mixed method of ANN and Genetic Algorithm, so that their results were consistent 

with the applicable specification requirements. 

ANN was also used in a heuristic effort to estimate the operatinal parameters of the counter-rotating wind 

turbine in which, neural networks played an important role in enabling the optimization of the dual-rotor 

turbine parameters [34]. 
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  An ANN model was used to model air void content in an aggregate mixture, which was designed for feed-

forward type using the error Back-Propagation Algorithm (BPA) [35]. 

ANN has also been used to predict gold price fluctuations, so that Kristjanpoller and Minutolo [36] presented 

a hybrid model of ANN and the generalized autoregressive conditional hetero-skedasticity (GARCH), which 

also analyzed the price fluctuations of the gold spot price and future price. This mixed model dramatically 

contributed to predict the process in order to determine the impact of financial variables on gold prices. 

ANN has also been considered in the field of agricultural industry, so that it has been used to predict the 

amount of sesame seed production. The prediction in this process was utilized two models of ANN and 

Multiple Regression Models (MLRs) that eventually, ANN prediction outcomes were far better than the MLR 

results based on the comparison results [37]. 

There are many instances of ANN application in literature; however the lack of the Location-Allocation 

Problems (LAPs) is so clear in literature. Hence, it is attempted in this paper, to implement ANN in the HLPs 

(as one of the LAPs subsets). 

HLPs fall into the NP-Hard problems group [38], and increased reliability aspects of these problems causes 

doubling their complexity, and reliable HLPs can be surely placed in this group. So, the Lagrangian relaxation 

solution is used in the problem solving process. Accordingly, different algorithms and methods for these 

problems spend considerable time to solution to provide final result and problem solution. For instance, 

sometimes it is needed to compare the solution and select it from a set of solutions of the problem to select 

the final solution so that each solution is obtained by changing the problem parameters and re-executing the 

solving method, which requires considerable time. In this paper, we attempted to provide a linear modeling 

of Multimodal Hierarchical Hub Location Problem (MHHLP), utilizing ANN that provides a set of the 

problem different solutions for different values of parameters with a minimum error rate and in the least 

possible time. 

Therefore, the most important contribution of this paper is designing and developing an ANN linear model 

to predict the objective function of problem, in addition to provide a multimodal hierarchical hub location 

model and developing the lagrangian relaxation algorithm for its solution process. 

The reminder of the paper is structured as follows according to the well-known patterns in the literature: the 

problem statement and the mathematical model are presented in Section 2. The steps of solving the lagrangian 

relaxation are presented in Section 3. Section 4 describes the design stages of the ANN model. Section 5 

describes the computational results and MHHLP route reliability prediction stages. Finally, conclusion and 

research suggestions are provided in Section 6. 

2|MHHLP Formula 

As mentioned earlier, the MHHLP research problem is one of the specific problems and subsets of LAPs. 

Therefore, before designing the mathematical model of the problem, first, its assumptions will be described 

to determine how the model will be formed. Then various indices and sets are introduced, after which the 

parameters and variables of the problem are presented. Finally, the integer programming model is proposed. 

2.1|MHHLP Assumptions 

In this model, the costs of the investment are somehow minimized in terms of affecting the flow rate of each 

route in the objective function and the make dependencies between the routes reliability on the traveled 

distance. This is because of the logic that the shorter route has a less probability of disruption, and the 

possibility of disconnecting is far less than the longer route. 

The MHHLP problem to solve the reliability is related to the volume of traffic and the distance traveled to 

calculate reliability, so it has specific computational properties. 

The following assumptions are proposed for the mathematical model: 
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I. The hubbing effect is considered as constant values, between 0 and 1, as the discount factor at different 

levels of the hub network. 

II. The problem has three-level. The first level is related to the non-hub nodes, the second level is related to 

facilities hub, and the third level is related to facilitating the central hub (see also Yaman [18], Korani and 

sahraeian [9]). 

III. The hierarchical structure of the output network is in nested and non-coherent form. 

IV. The transportation mode is ground between the hub and non-hub and air between the air hub and the central 

hub. 

V. The number of hub facilities is constant in each level and the problem approach is p-hub. 

VI. The facilities location-allocation optimization problem approach is implemented. 

VII. Facilities capacity and transmission routes are unconstrained. 

VIII. The time to travel between the nodes and the demand values is constant. 

IX. The first level has a central hub facility. 

X. The location of the demand nodes is predetermined. 

XI. The hub facilities potential locations are known. 

XII. The solution space is discrete. 

2.2|Indices and Symbols Of MHHLP 

In this section, the three components of the model, namely sets, parameters, and variables of the problem 

have been introduced. The indices used in the proposed model include: 

I: the set of all studied nodes. 

H: the set of the potential nodes of the hub ( H I ). 

C: the set of the potential nodes of the central hub ( C H ). 

Parameters: 

HP : the number of hub facilities in the second level. 

ijf : the demand flow rate between the source i I  and the destination j I . 

α : discount factor of hubbing effect on transportation time ( 0 α 1  ). 

 γ : the impact factor of hubbing effect on the reliability ( 0 γ 1  ). 

β : maximum time to service between each pair of source and destination nodes. 

ijt : travel time in the communication route between i I  and j I nodes in ground transportation mode. 

ijt : travel time in the communication route between the i I and j I nodes in the air transportation mode. 

ijr : the reliability of the communication route between i I and j I nodes in the ground transportation 

mode. 

ijr : the reliability of the communication route between i I  and j I  nodes in the air transportation mode. 

Variables: 
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iklx : 1 If the node is assigned to the hub k H and is assigned to the central hub l C through this hub, 0, 

otherwise, the node k H  is a hub in the second level if kklx 1  . Also, the central hub is established in the 

node l C if lllx 1 . 

i

klz : the flow rate derived from the source node i I  passing through the communication route between 

the hub node k H and the central hub l C  node. 

m

ijy : the flow rate derived from the source node i I that reaches the destination node j ∈ I through the 

hub m H . 

lT : maximum time needed by each demand flow to reach the central hub l C  node. 

km

ijw : the flow rate derived from the source node i I , which arrives at the destination node j I through 

the route where two distinct hubs of k and m are located, so 
km

ijw is quantifiable when iklx 1 . 

2.3|Mathematical Formulation of MHHLP 

An example is presented in Fig. 1 to describe the problem, in which there are 8 demand nodes. The nodes k, 

l, and m are the second level hub and the central hub l node (given the nested feature of the node l is both a 

hub and a central hub, see also; Yaman [18]; Koran and Sahraeian [13], so, there are four general routes. The 

route of type 1 occurs when there is only one hub in the route, and moving from the non-hub node to the 

hub or central hub node, the routes ik, el, jm, and qm are the route of type 1. The route of type 2 

occurs when a hub is in the route, but the flow starts from the hub to the non-hub node, the inversed flow 

of the four paths of type 1, elu, qmj and the inverse of these two routes is of Type 2. Route 3 is a 

path with a hub and a central hub, with the direction of the hub to the central hub, the routes ml and 

ikl are of this type. The route 4 occurs when there is more than one hub in the route and the flow passes 

through the central hub, so multiple scenarios are created. The routes ikle, kle , elmj , 

elm , lm , lmj  , klm , klmj  , iklm  and iklmj are of this kind. It 

should be noted that in these routes, the initial node transfers its demand (ie. fij) to the final node through 

the intermediate nodes and the demand flow of the other nodes are not involved in these routes. 

 

Fig. 1. Hierarchical hub network with 8 demand nodes, 3 hubs and a central hub. 

We considered the communication mode between the hub and non-hub nodes as ground and the between 

hub and central hub nodes as air on this multimodal route, followed by Alumur et al. [10]. Thus, according 

to what mentioned above, how to calculate the reliability of the routes in figure 1 is calculated in Table 1, 

which is applied to air routes with an impact factor on reliability ( γ ). It should be noted that for each i I

, iir 1 since the chance of reaching a node to itself is deterministic. 

g

r
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Table 1. The reliability of the flow passing through each of the four paths. 

No. Flow Reliability Route No. Flow Reliability Route 

4 γ γ km

ik kl lm mj ijr r r r w  iklmj, k m  1 ik ikl ijj H
r x f

  ik 

4 γ γ kl

ik kl ll le ier r r r w  ikle, k l  1 el ill ejj I
r x f

  el 

4 γ γ lm

ul ll lm mj ujr r r r w  ulmj, l m  3 γ i

ik kl klr r z  ikl 

2 l

el lu ell eur r x y  elu, l u  2 mm

qm mj qjr r w  qmj, m j  

 

Now, the objective function of the problem with the goal of maximizing the reliability of the flow of the 

network paths, is proposed as Eq. (1) according to Table 1. 

The objective function formulate in four parts of Models (1-1), (1-2), (1-3) and (1-4), so, we breakdown to 

explain one by one as follow:  

According to Table 1, we encounter four types of routes 1-4, so the objective function in the form of four 

sections Models (1-1), (1-2), (1-3), and (1-4) is described for the route types 1 to 4, respectively. Problem 

constraints are grouped based on the structure created in the problem, as follows: 

Single assignment hub location-allocation 

The constraints of the hub network structure are designed as single assignment in this section. Constraint (2) 

ensures that each demand node has only one route to the central hub. Constraint (3), Constraint (4), and 

Constraint (6) are only allowed to establish the route when the middle node being a hub or central hub. 

Constraint (5) and Constraint (6) reinforce the single assignment structure. 

Opening P-hub facilities: 

Considering that the design basis for the P-hub median problem and the number of facilities to be established 

are given at each level, Constraint (7) and Constraint (8) determine the number of hub facility in the second level 

and the number of central hub to be established at first level. 

γ i kk γ γ km

ik ikl ij ik kl kl ik kj ij ik kl lm mj ij

i I k H l C j I i I k H l C i I k H\{j} j I i I k H m H\{k} l C

Max r x f r r z r r w r r r r w .
             

            (1) 

ik ikl ij

i I k H l C j I

r x f .
   

   
(1-1) 

γ i

ik kl kl

i I k H l C

r r z .
  

  (1-3) 

kk

ik kj ij

i I k H\{j} j I

r r w .
  

    (1-2) 

γ γ km

ik kl lm mj ij

i I k H m H\{k} l C

r r r r w .
   

    (1-4) 

ikl

k H l C

x 1, for all i I.
 

   (2) 

ikl kklx x , for all i I,k H,l C,k i.      (3) 

kml lll

m H

x x , for all k H,l C,l k.


     (4) 

lklx 0, for all k H,l C,l k.     (5) 

iklx {0,1}, for all i I,k H,l C.     (6) 
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Flow balance constraints:  

Constraint (9) calculates the amount of output flow from the source node i, passing the hublink between the 

hub k and the central hub l. This constraint is used as balancing constraint in Yaman [18] and Korani and 

Sahraeian [9] Used. 

Hence for every link from a hub to its central hub, the amount of traffic demand will be computed by 

Constraint (9) and Constraint (10). 

Constraint (10) ensures that the variable flow rate originating from source i, passing through the connecting 

route of the nodes of the hub k and the central hub l, is not greater than the total flow derived from the 

source node i. This constraint is introduced in Correia et al. [39] according to its application. The Constraint 

(11) and Constraint (12) are designed inspired by Ernst & kirshnamoorthy [40] and Karimi and setak [11], that 

guarantee that the target node j receives a flow originating from the source node i. The Constraint (13) and 

Constraint (14) guarantee that when the demand flow is transferred from the source node i to the destination 

node j through two hubs k and m, respectively, the nodes i are assigned to the hub k and node j to the m hub. 

The Constraints (15) are also applied to ensure the accuracy level of flow rate. The Constraints (16)-(18) amplify 

the LP model. 

Constraints (19)-(21) indicate the time bound constraints. These constraints guarantee that the travel time 

between each pair of source and destination nodes is no greater than the predetermined value of β. Constraint 

(19) serves travel time from each source to the central hub of that node in the variable, and the Constraint (20) 

places the total travel time from the source node to the destination node under the radius of the upper bound 

of β. The idea of this set of constraints in derived from research such as Ebery [41], Ernst et al. [42], Yaman 

[18] and Korani and Sahraeian[9]. 

jjl H

j H l C

x p .
 

  
(7) 

lll

l C

x 1.


  (8) 

i

kl ij ji ikl jkl

j I:j k

z (f f )(x x ), for all i I,k H,l C,l k.
 

        (9) 

i

kl ij ji

k H l C j I

z (f f ), for all i I.
  

     (10) 

k

ij jkl ij

i I i I

y x f , for all j I,k H,l C.
 

      (11) 

k

ij ij

k H

y f , for all i I, j I.


    (12) 

km

ij ikl ia

a I

w x f , for all i I,k H,l C,m H, j I.


     
 

(13) 

km m

ij ijw y , for all i I,k H,m H, j I.      (14) 
km m

ij ij ikl ia

a I

w y (1 x ) f , for all i I,k H,l C,m H, j I.


       
 

(15) 

km

ijw 0, for all i I,k H,l C,m H, j I.       (16) 

i

klz 0, for all i I,k H,l C.     (17) 

k

ijy 0, for all i I, j I,k H.     (18) 

ik kl ikl l

k H

(t α t )x T , for all i I,l C.


     (19) 

l lr rj jrl

r H

T (α t t )x β, for all j I,l C.


      (20) 

lT 0, for all l C.   (21) 
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3|Lagrangian Relaxation Method 

There are various approaches based on mathematics to simplify the model and relax it from the variables and 

constraints that make the problem difficult to solve, including the Lagrangian relaxation method which is 

developed for the MHHLP model in the present paper. This methodology has been developed for several 

models in the HLPs literature including Aykin [43], Lee et al. [44], Marín [45], Contreras et al. [46], Ishfaq and 

Sox [47], Mohammadi et al. [48], Karimi and Setak [11], He et al. [49] and Neamatian Monemi et al. [5]. 

According to the literature, the problem constraints was identified, and it was observed that the relationship 

between the two decision variables iklx  and km

ijw dramatically affect the time to solution which was observed 

in Constraint (13) and Constraint (15). Hence, two sets of Lagrange multipliers km

ijλ  and km

ijμ were defined for 

the Constraint (13) and Constraint (15), respectively (
km

ijλ 0 and
km

ijμ 0 ). With the help of Lagrange multipliers, 

the relaxed problem as LR was defined as Eq. (22). 

The problem LR(λ,μ)  is a formulation based on the Lagrangian relaxation approach, resulting in a high 

bound for MHHLP. Therefore, this approach is an attempt to find the best bound for the problem to match 

or close the optimal solution. To create this improvement process, the proposed method of Neamatian 

Monemi et al. [5] was followed by the sub gradient optimization method. In this method, a six-step algorithm 

was developed in the form of Fig. 2, in which the signs and indexes were used, as follows: 

LB: lower bound. 

UB: upper bound. 

iter: iteration index. 

ψ : a random response resulting from solving the problem relaxed from hard constraint clause. 

iterLR : the output of lagrangian relaxation for the objective function in iter repeat. 

iterπ : sub gradients of Constraint (13) in the iterth iteration. 

 
iterθ : sub gradients of Constraint (15) in the iterth iteration. 

iters : the movement step in the iterth iteration. 

kk γ γ km γ i

ik kj ij ik kl lm mj ij ik ikl ij ik kl kl

i I k H j I\{k} i I k H m H\{k} j I l C i I k H l C j I

km m km km km

ij ij ij ij ij

i I k H m H j I i I k H m H j I i k H m H j I l C

LR(λ,μ) : Max r r w r r r r w (r x f r r z )

μ y μ w μ

           

            

  

  

      

   ikl ia

I a I

km km km

ij ij ij ikl ia

i I k H m H j I i I k H m H j I l C a I

(1 x ) f

λ w λ x f .



         



 

 

  

 
(22) 

Such that.      (2)-(12),(14),(16) and (21)  
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iterρ : the multiplicative which is used as a decreasing factor in each iteration. 

 

Fig. 2. Optimization subgradients procedure for MHHLP. 

In the next section, it is attempted to examine the inequity and proposed method performance, individually 

and in combination of all available modes with the help of the standard data in the research literature, so that 

the best combination can be achieved in order to reach the best possible response in the shortest possible 

time. 

4|ANN Model of the Proposed MHHLP 

An information processing system is used in order to predict and estimate the route reliability, or the same 

value of the MHHLP objective function, which is based on a large number of super-integrated processing 

elements called neurons that work together to solve a problem and transmit information by synopses 

(electromagnetic communications); this system is called the ANN in literature and neural biology, which main 

idea is inspired by the structure of human brain activity [50]. In the last decade, ANN has been used as an 

effective tool to estimate problems, and given that ANN can be defined as a mathematical system and the 

neuron is interpreted as a processing unit, network architecture is created helping organizing neurons, many 

of which are designed in the literature; however, the most popular of them is the Multi-Layer Perceptron 

(MLP) networks, which are among the Feed Forward Neural Networks type [51]. 

These networks have input, hidden, and output layers in their topology [28], [51]. 

The neurons are placed on the layers with an activation function and each neuron is connected to the neurons 

in the next layer with the weighted connections. 

The ANN weights are trained using a form of error feedback, which can be viewed as a generalization of the 

Learning Management System (LMS) [28]. 

An error BPA is used to train the network to correct these weights in the various layers of the MLP. 

The complexity of the connection network is directly related to the number of layers and neurons of each 

layer, whose accurate selection has a significant impact on achieving the best possible responses at the best 

possible time. Therefore, the neural network sensitivity was analyzed based on different numbers of hidden 

layers, the number of neurons, activation functions, etc. in order to achieve the best topology for MHHLP 

design, 
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The obtained result is the proposed MLP model structure with four inputs, a hidden layer and an output that 

is mapped to the CAB dataset in Fig. 3 and is exactly identical to the IAD dataset, however, 3 neurons are 

defined instead of the 4 neurons in the hidden layer. 

Fig. 3. The proposed MLP model architecture for MHHLP with CAB dataset. 

In the context of a feed-forward network, a hidden layer neuron is a Pre-synaptic Neuron (PN) because it is 

connected to other neurons in the network which are post-synaptic in relation to its output. In feed-forward 

networks, neurons form layers, or slabs, which are connected to and from post- and pre- synaptic neurons. 

Such groupings of neurons that are themselves connected to other neurons are sometimes (traditionally) 

called hidden layers or hidden layer neurons1. 

Input data is composed of problem parameters (i.e. the number of nodes, the number of hubs, hubbing factor 

of time and hubbing factor of reliability) and the results of the Lagrangian relaxtion method choosed as output 

data for training for the ANN model. The Levenberg–Marquardt (LM) algorithm used for the training rule 

of network. These data were divided into two sets: training set (eighty percent of data) and test set (twenty 

percent of data). The MATLAB R2013a 8.1.0.604 software used for the training of the ANN model. The 

implementing phases of the ANN model with BPA presents in the Fig. 4. The planned ANN model 

specifications have been presented in Table 2 for each data sets of IAD and CAB. 

Table 2. The characteristics of planned ANN model. 

 

 

 

 

 

We use tangent sigmoid transfer function tansig function as activation function in MLP models. This function 

is wellknown in literature [28]. The formulation of Tansig defines in Eq. (23) as follow: 

                       

1 http://standoutpublishing.com/g/hidden-layer.html 

Neural Network MLP 
IAD CAB 

Number of neurons in the input layer 4 4 

Number of neurons in the hidden layer 3 4 

Number of neurons in the output layer 1 1 

Number of epochs 1000 1000 
Activation function Tansig Tansig 

2
Tansig(x) 1.

1 exp 2(x)
 

 
 (23) 

http://standoutpublishing.com/g/hidden-layer.html
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Fig. 4. Flowchart of the ANN model phases (adapted from [51]). 

 

5|The Computational Results 

The present paper uses two well-known dataset in the HLPs literature namely the Civil Aeronautics Board 

(CAB) and the Iranian Aviation Dataset (IAD). O'kelly [52] introduced the CAB data on the basis of the 

transport network of the 25 states of the United States. 

Karimi and Bashiri [53] studied transportation network in 37 cities of Iran and provided the collected data in 

the form of IAD. These two data sets do not provide the reliability rate of the routes. Therefore, the reliability 

of data was adopted from Kim and O'kelly [17] and An et al. [4]. Also, the reciprocating success chance of 

each return route was assumed equal and, by were placed at a distance of (0,1) by normalizing the reliability 

data results. The reliability and travel time in the ground mode are reduced by 50% compared to air mode 

through calculations, considering the capability and ability of air mode to ground mode transportation. 

Tehran (the capital city of Iran) was selected as the central hub in the IAD dataset. Placing the only 

international airport in this city and possessing the largest number of population were the reasons for selecting 

this city (as the research Alumur et al. [10]). We selected the node 17 with the largest volume of 

communications (1447732) as the central hub for CAB data in a heuristic attempt regarding the dataset. 

The β value is obtained from the average of the problem feasible modes for its various values in the rigorous 

mode, which is similar to the decision-making process used by Yaman [18], Alumur et al. [14] and Korani 

Sahraeian [13] to determine β. Therefore, this amount was obtained 2640 and 2880, for the MHHLP structure 

for CAB and IAD data, respectively. 

Three Objective Factor (ObFu), Response Improvement Rate (ReIm) and hub facilities (Hub) were 

considered to evaluate the performance of the Lagrangian approach. ReIm is obtained from the difference 

between the pure relaxed response and the lower bound of Lagrangian relaxation on the pure relaxation 

response. 

The numerical initial value 
iterρ  is considered constant considering the dimensions of the problem. For the 

subsets 5, 10, 15 and 20, this value was 9, and for the subsets of 25, 30, and 37 nodes, it was considered 90. 

The results of the Lagrangian relaxation method for IAD and CAB data are presented in Table 3 and Table 4, 

respectively. 



 Korani|Res. Ann. Ind. Syst. Eng. 2(1) (2025) 48-71 

 

59

 

  
Table 3. IAD data with β = 2880. 

 N PH α 1-ɤ ObFu ReIm Time Hub 

10 3 0.2 0.2 16.254 28.00 76.593 1,9,31 

   0.8 13.966 29.00 80.325 3,5,31 

  0.8 0.2 16.103 28.00 82.612 2,5,31 

   0.8 13.849 29.30 80.150 2,5,31 

 6 0.2 0.2 16.966 26.40 76.765 2,4,5,6,7,31 

   0.8 14.409 25.80 75.922 2,4,5,6,7,31 

  0.8 0.2 16.830 22.30 77.856 1,3,5,7,9,31 

   0.8 14.328 26.40 47.638 2,4,6,7,9,31 

20 5 0.2 0.2 113.771 22.80 992.932 4,7,9,10,31 

   0.8 90.471 15.50 878.752 3,7,13,15,31 

  0.8 0.2 113.283 19.10 924.357 1,7,14,18,31 

   0.8 90.723 15.90 905.642 4,7,9,10,31 

 10 0.2 0.2 108.482 18.80 894.079 4,5,6,9,11,14,15,17,18,31 

   0.8 86.561 19.00 877.761 1,3,5,6,9,13,14,17,18,31 

  0.8 0.2 107.739 20.90 934.164 1,3,4,6,7,11,13,14,15,31 

   0.8 86.498 19.60 915.603 3,5,6,7,9,13,14,15,19,31 

30 7 0.2 0.2 308.957 15.30 5369.218 9,23,24,25,27,29,31 

   0.8 251.803 18.80 4554.381 7,9,11,14,21,24,31 

  0.8 0.2 306.568 15.90 4031.185 5,6,9,12,14,27,31 

   0.8 249.149 19.70 3699.427 9,14,16,19,20,28,31 

 14 0.2 0.2 295.254 18.40 5355.854 3,6,8,9,12,14,15,17,18,21,24,28,29,31 

   0.8 237.440 21.80 5845.368 4,6,8,9,11,13,14,17,18,20,21,24,26,31 

  0.8 0.2 294.495 18.60 5425.368 1,4,5,6,8,9,14,15,16,17,19,21,27,31 

   0.8 238.374 21.50 5326.301 5,6,8,9,14,16,17,18,21,23,26,28,29,31 

37 9 0.2 0.2 518.064 12.01 19527.866 2,3,9,24,27,31,33,34,37 

   0.8 415.573 16.00 17651.638 1,9,13,17,22,26,31,33,34 

  0.8 0.2 205.762 11.84 17561.843 8,9,14,17,18,24,31,35,37 

   0.8 413.988 16.30 13816.276 3,9,11,24,26,29,31,33,37 

 18 0.2 0.2 498.805 20.48 21220.677 2,5,6,7,8,9,13,14,20,21,25,26,31,33,34,35,36,37 

   0.8 383.840 20.48 23277.403 2,5,6,7,8,9,13,14,20,21,25,26,31,33,34,35,36,37 

  0.8 0.2 484.755 20.48 21729.580 2,5,6,7,8,9,13,14,20,21,25,26,31,33,34,35,36,37 

   0.8 383.980 20.48 20924.306 2,5,6,7,8,9,13,14,20,21,25,26,31,33,34,35,36,37 
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  Table 4. CAB data with β = 2640. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To demonstrate the impressionability of the ObFu and step size changes process from 
iterρ , Fig. 5 is plotted 

for the 30-node set of IAD data, so that PH = 7, = 0.8 and = 0.8 α, by GAMS software outputs. Fig. 5 shows 

that the accuracy of the calculation is greater by increasing the discount factor in large data and the changes 

curve is more concave, and vice versa, the change slope of step size changes shifted from line shape to stairs, 

which guarantees achieving the better response. 

a. 

N PH α 1-ɤ ObFu ReIm Time Hub 

5 1 0.2 0.2 1234845.515988 36.40 26.735 17 
   0.8 1170003.494381     35.30 27.629 17 
  0.8 0.2 1234845.515988     36.40 25.775 17 

   0.8 1170003.494381 35.30 28.521 17 

 3 0.2 0.2 1470844.172062 23.60 29.993 3,4,17 

   0.8 1375857.385783 22.90 31.513 1,3,17 

  0.8 0.2 1470844.172062 23.60 30.972 3,4,17 

   0.8 1375857.385783 22.90 29.933 1,3,17 

15 4 0.2 0.2 8581277.210319 19.40 303.486 3,9,12,17 

   0.8 6927494.390239 21.80 298.223 9,12,14,17 

  0.8 0.2 8344651.530996 21.60 293.957 6,8,12,17 

   0.8 6944090.143229 20.90 290.832 2,8,12,17 

 8 0.2 0.2 8302771.440473 21.70 316.900 6,7,8,10,11,12,13,17 

   0.8 6683215.422164 23.20 296.309 2,3,5,6,8,13,14,17 

  0.8 0.2 8184242.793126     22.80 305.893 1,3,4,8,12,13,14,17 

   0.8 6649183.937808 23.10 283.404 1,2,4,11,12,13,14,17 

25 6 0.2 0.2 25413461.934842 11.90 3835.420 13,16,17,19,20,23 

   0.8 20202865.443763 14.30 2876.640 2,3,8,17,19,24 

  0.8 0.2 25109500.301100 12.80 2020.928 5,12,17,19,22,23 

   0.8 20236900.452763 13.60 3476.640 9,11,17,19,22,23, 

 12 0.2 0.2 24983278.442424     12.90 3132.293 7,8,10,11,13,15,16,17,18,19,21,23 

   0.8 19702691.089243     14.70 2601.043 1,2,3,5,9,10,13,14,17,19,22,23 

  0.8 0.2 24774015.368644     13.50 1940.601 7,8,10,11,13,15,17,18,19,21,22,23 

   0.8 19478500.521147     15.20 2104.402 2,6,8,11,12,13,16,17,19,22,23,24 
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b. 

Fig. 5. Trends of ObFu; a) and step size, b) for IAD dataset with PH=7,

iter
ρ 90 , α=0.8 and ɤ =0.8. 

Table 5 and Table 6 show the obtained results for the proposed ANN model for IAD and CAB datasets, 

respectively. So that, the Eqs. (24)-(26) are used to calculating the mean relative error percentage (MRE %), 

the Root Means Square Error (RMSE) and the mean absolute error percentage (MAE %) of the network, 

respectively. 

 

Table 5. The training and testing errors results of the proposed 

ANN model for IAD data. 

 

 

 

 

Table 6. The training and testing errors results of the proposed 

ANN model for CAB data. 

 

 

 

   All of the symbols and indexes are used in the Eqs. (24)-(26), define in Table 7. 

N i i

i 1
i

x (exp) x (pred)1
MRE% 100 .

N x (exp)


    (24) 

2N

i ii 1
(x (exp) x (pred))

RMSE .
N





  (25) 

N

i ii 1

1
MAE% 100 x (exp) x (pred) .

N 
    (26) 

Error Train Test 

MRE% 1.4122 2.6311 

RMSE 0.0033 0.0045 

MAE% 0.2089 0.2722 

Error Train Test 

MRE% 0.0016 0.1391 

RMSE 1.39×10-5 4.41×10-4 

MAE% 4.1×10-4 0.0238 
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  Table 7. The symbols in the Eqs. (24)-(26). 

 

 

 

  

Several numbers of neurons have been applied for the proposed ANN architectures, which best structure is 

selected. The results of the applied networks with different number of neurons in the hidden layer are 

illustrated in Fig. 6. This figure shows the MAE errors of the networks versus different number of neurons 

in the hidden layer. Each point in these figure represent the network with best MAE results during 200 times. 

These MAE errors are reported according to the normalized data. 

2 3 4 5 6 7 8 9 10
0

1%

IAD Model

CAB Model

 Neurons Number of the Hidden Layer

M
A

E 2%

3%

4%

 

Fig. 6.  MAE errors of the networks versus different number of neurons in the hidden layer. 

According to Fig. 6, the numbers of 3 and 4 neurons, which have the best MAE error values, are considered 

for the hidden layers of IAD and CAB models, respectively. In the proposed networks, 80 percent of data set 

is used for training, while 20 percent of the data set is used for testing process of the presented model. So, we 

suggested ANN model for both datasets then train and test for everyone. Objective function actual and 

predicted values comparison for the IAD data, using the proposed MLP model for IAD is illustrated in Fig. 

7 and Fig. 8.  The objective function actual and predicted data for training and testing process for IAD data 

are listed in Table 8 and Table 9, respectively. Also, the conformity actual and predicted values for the IAD 

data using the proposed MLP model for IAD are illustrated in Fig. 8. 

As can be seen from Fig. 7 and Fig. 8 and Table 8 and Table 9, the test and train data are predicted precisely 

and the predicted values of output MHHLP reliability by ANN model is the instances of near to the Objective 

function actual results, undoubtedly. 

The outcomes endorse the accuracy and applicability of estimation of ANN as a reliable model to predict the 

proposed MLPs output MHHLP reliability from the number of nodes, the number of hubs, hubbing factor 

of time and hubbing factor of reliability validate by results. 

Symbol Definition 

N The number of data 

x(exp) Stand for real ANN values 

x(pred) Stand for predicted ANN values 
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Table 8. Model results for IAD train data with β = 2880. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9. Model results for IAD test data with β = 2880. 
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a. 

Input Output 
N PH α 1-ɤ Actual Predicted  

30  14 0.2 0.8 237.44 239.62 
20 10  0.8  0.8  86.50 85.63 
10 6 0.2  0.8  14.41 13.48 

37 9 0.8  0.8  413.99 413.99 

20 5 0.8  0.2  113.28 113.21 

37 9 0.2  0.2  518.06 513.10 

30 7 0.8  0.8  249.15 249.26 

30 7 0.2  0.2  308.96 311.85 

37 9 0.8  0.2  205.76 205.76 

37 18 0.8  0.2  484.75 484.76 

10 6 0.2  0.2  16.97 17.41 

20 10 0.8  0.2  107.74 107.67 

30 14 0.8  0.8  238.37 239.96 

30 14 0.8  0.2  294.5 293.92 

37 18 0.2  0.2  498.8 500.78 

20 5 0.2  0.8  90.47 91.13 

37 18 0.2  0.8  383.84 383.85 

10 3 0.2  0.8  13.97 13.96 

30 14 0.2  0.2  295.25 292.29 

10 3 0.8  0.2  16.10 17.85 

20 10 0.2  0.2  108.48 108.51 

10 6 0.8  0.8  14.33 13.33 

20 10 0.2  0.8  86.56 86.48 

30 7 0.2  0.8  251.80 248.67 

30 7 0.8  0.2  306.57 306.59 

Input Output 
N PH α 1-ɤ Actual Predicted  

37 9 0.2  0.8  415.57  420.84 

10 3 0.2  0.2  16.25   18.06 

10 3 0.8  0.8   13.85   13.80 

20 5 0.2  0.2  113.77  114.03 

20 5 0.8  0.8   90.72   90.26 

10 6 0.8  0.2   16.83   17.21 
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b. 

Fig. 7. Actual and predicted values comparison of; a) test and, b) 

train data, using the proposed MLP model for IAD. 
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Fig. 8. Conformity actual and predicted values of; a) test and, 

b) train data, using the proposed MLP model for IAD. 
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Another model is propped for the CAB data. Actual and predicted values comparison for the CAB data, using 

the proposed MLP model for CAB is illustrated in Fig. 9 and Fig. 10. The objective function actual and 

predicted data for training and testing process for CAB data are listed in Table 10 and Table 11, respectively. 

As can be seen, the test and train data are predicted precisely.  

Also, the conformity actual and predicted values for the CAB data using the proposed MLP model for CAB 

are illustrated in Fig. 10. 

Table 10. Model results for CAB train data with β = 2640. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Table 11. Model results for CAB test data with β = 2640. 
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a. 

Input Output 
N PH α 1-ɤ Actual Predicted  

25 6 0.2 0.2 25413461.9 25412043.2 
25 12 0.8 0.2 24774015.3 24773994.9 
5 1 0.2 0.2 1234845.52 1234990.91 

5 1 0.8 0.2 1234845.52 1234701.76 

5 3 0.2 0.8 1375857.39 1375855.70 

15 4 0.2 0.2 8581277.21 8581269.82 

15 8 0.20 0.2 8302771.44 8302775.49 

25 12 0.20 0.8 19702691.0 19702692.5 

15 8 0.80 0.8 6649183.94 6649185.67 

15 4 0.20 0.8 6927494.39 6927494.40 

15 8 0.20 0.8 6683215.42 6683216.26 

15 8 0.80 0.2 8184242.79 8184243.93 

25 6 0.80 0.8 20236900.4 20236900.5 

15 4 0.80 0.2 8344651.53 8344658.59 

5 1 0.80 0.8 1170003.49 1170003.39 

25 6 0.20 0.8 20202865.4 20202865.1 

25 12 0.20 0.2 24983278.4 24983308.4 

25 6 0.80 0.2 25109500.3 25109509.2 

Input Output 
N PH α 1-ɤ Actual Predicted  

15 4 0.80 0.80 6944090.14 6920353.81 

5 1 0.20 0.80 1170003.49 1169883.82 

5 3 0.80 0.80 1375857.39 1374359.18 

5 3 0.20 0.20 1470844.17 1473467.30 

5 3 0.80 0.20 1470844.17 1470019.09 
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Fig. 9. Actual and predicted values comparison of; a) test and, 

b) train data, using the proposed CAB-MLP model. 
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Fig. 10. Conformity actual and predicted values of; a) test and, 

b) train data, using the proposed MLP model for CAB data. 
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The most important benefits of the proposed ANN model are the ease of use, present output at the best time 

and the quality of the solution. Accordingly, the MHHLP reliability for the IAD with N=37 and CAB with 

N=25 was predicted that the different values of the three inputs PH, 1- ɤ and α. Hence, the following data 

are predicted by the proposed IAD and CAB MLP models which are listed in Table 12 and Table 13, 

respectively. These results have been calculated in best time vs solution time other methods. 

Table 12. Predicted results of MLP model for IAD data. 

 

 

 

 

 

 

 

 

 

 

 

Table 13. Predicted results of MLP model for CAB data. 

 

 

 

 

 

 

 

 

 

 

6|Conclusions 

The gap is determined in this paper through examining the literature on HLPs and a new model called 

MHHLP was introduced, which included three multimodal transport, hierarchical structure and reliability 

characteristics, simultaneously. The contribution of the proposed model is in terms of its constraints and 

problem variables design and that, the different routes of network are identified and formulated based on the 

demand flow in the network in defining its equations. Considering the problem placement in the range of 

NP-Hard problems, the Lagrangian Relaxation Algorithm was developed for it and the results were obtained, 

 Input Output Input   Output 
N PH α 1-ɤ Predicted PH α 1-ɤ Predicted 

37 4 0.20 0.2 516.41 20 0.80 0.2 270.50 
4 0.20 0.8 445.72 20 0.80 0.8 412.28 
4 0.80 0.2 245.55 24 0.20 0.2 509.71 

4 0.80 0.8 355.12 24 0.20 0.8 406.71 

8 0.20 0.2 515.67 24 0.80 0.2 367.01 

8 0.20 0.8 438.06 24 0.80 0.8 407.71 

8 0.80 0.2 193.45 28 0.20 0.2 507.23 

8 0.80 0.8 394.87 28 0.20 0.8 398.95 
12 0.20 0.2 514.68 28 0.80 0.2 436.85 

12 0.20 0.8 430.27 28 0.80 0.8 401.67 

12 0.80 0.2 170.19 32 0.20 0.2 504.26 

12 0.80 0.8 410.13 32 0.20 0.8 391.32 

16 0.20 0.2 513.39 32 0.80 0.2 471.05 

16 0.20 0.8 422.41 32 0.80 0.8 394.91 

16 0.80 0.2 194.30 36 0.20 0.2 500.78 

16 0.80 0.8 414.00 36 0.20 0.8 383.85 

20 0.20 0.2 511.75 36 0.80 0.2 484.76 

20 0.20 0.8 414.54 36 0.80 0.8 387.84 

 Input Output     Output 

N PH α 1-ɤ Predicted  PH α 1-ɤ Predicted 

25 1 0.2 0.2 25050451.39  15 0.2 0.2 25406442.84 

1 0.2 0.8 16026295.13  15 0.2 0.8 15325554.90 

1 0.8 0.2 19377456.30  15 0.8 0.2 25004882.77 

1 0.8 0.8 15962120.70  15 0.8 0.8 13761050.31 

5 0.2 0.2 25398242.67  20 0.2 0.2 25258947.23 

5 0.2 0.8 19560692.82  20 0.2 0.8 5498956.327 

5 0.8 0.2 23516098.44  20 0.8 0.2 24700271.80 

5 0.8 0.8 19437441.01  20 0.8 0.8 17857038.8 

10 0.2 0.2 25412159.53  25 0.2 0.2 24983308.43 

10 0.2 0.8 20975665.79  25 0.2 0.8 19702692.57 

10 0.8 0.2 25045876.39  25 0.8 0.2 24773994.90 

10 0.8 0.8 20904014.18  25 0.8 0.8 21716295.3 
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  accordingly. Finally, the data gathered by the Multilayer Perceptron (MLP) neural network were transformed 

into a model. 

Therefore, this paper has been presented a new feedforward method for estimating the reliability of MHHLP. 

For validation, the output reliability was predicted using proposed ANN model for the MHHLP. This 

proposed method is easily estimated the reliability of the MHHLP and has been validated by ANN model. 

Hence, the presented ANN model can be applied instead of the MHHLP model, for other implementations. 
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