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1|Introduction    

The modern industrial systems consist of various components with complex relationships. The continuous 

operation of these systems is required to achieve the highest level of productivity and profitability. During 

the recent decades, a considerable attention have been paid to develop maintenance and repair strategies that 
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Abstract 

Redundancy allocation problem (RAP) is one of the most important issues in reliability engineering to increase the reliability of a 

system. The design of the redundant systems involves determining the redundancy strategies, redundancy levels, the type of 

components, and system configuration. The redundancy strategy can be active, standby, or active/standby. This study for the first 

time provides an approach to determine the optimal configuration in k-out-of-n repairable systems with mixed active/cold standby 

redundancy strategy to simultaneously maximize system availability and minimize system cost. To deal with this combinatorial 

problem, a Non-Dominated Sorting Genetic Algorithm II (NSGA-II) is employed. To find the most suitable solutions amongst 

Pareto solutions, a multi-criteria decision making method, TOPSIS, is employed. To validate the performance of the proposed 

method for systems with mixed active/standby redundancy strategies, the results are compared with the results of applying the 

proposed method to systems with active strategy and also systems with cold standby strategy. The results show that both cold 

standby and mixed redundancy strategies provide high levels of availability. Using mixed redundancy strategy is preferred over the 

active and cold standby counterparts, because it delivers design flexibility and provides maximum availability. Interestingly, active 

components used in the proposed mixed strategy do not impose extra costs.  

Keywords: Redundancy allocation problem, Active/cold standby, Availability analysis, Non-dominated sorting genetic 

algorithm, Markov chains, TOPSIS decision making method. 
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allow for managing the inevitable failures of systems and their components [1]. In this context, two 

approaches have been developed to improve the reliability of the systems; one by increasing the reliability of 

the existing components, and the other by allocating redundant components. The optimal system design is 

determined by solving the Redundancy Allocation Problem (RAP). RAP is an NP-hard problem, 

which determines the most appropriate redundancy strategies and the optimal number of the redundant 

components given system-level design constraints [2]. The majority of the studies addressing RAP have 

studied non-repairable systems and focused on reliability as a measure of system’s performance. However, in 

systems with repairable components, analyzing availability could better help to evaluate maintenance 

management and adopt more efficient strategies [3]. The systems involve subsystems with either standby or 

active redundancy strategy [4]. The standby strategy improves the system’s reliability with minimum 

depreciation of the components; however, this strategy poses limitations due to complications of failure 

detection and switching mechanism of the redundant components. On the other hand, the use of active 

strategy is not always economically feasible due to the high depreciation rate of the components. To overcome 

these limitations and prevent interruptions in systems’ performance, mixed strategies including both active 

and standby redundancies have been proposed [5], [6]. In this approach, active redundancy is used for critical 

components of the system, and the other components are used in standby state. During the last decade, the 

mixed redundancy strategy has increasingly been used to develop novel models for the RAP. Some of the 

recent studies addressing RAP in systems with mixed redundancy strategy are summarized in Table 1. One of 

the pioneering studies in this field was conducted by Ardakan and Hamadani [5]. They proposed a novel 

model for RAP with choice of redundancy strategies. The mixed active and cold standby strategy provided 

higher reliability compared to conventional active or cold strategies. Besides, it delivered more flexibility to 

design complex systems with improved performance. In 2015, Abouei Ardakan et al. [6] developed a mixed 

active and cold standby strategy for a series–parallel system with non-repairable components. The proposed 

non-linear model considered reliability and cost as objective functions. The model allowed for selection of 

the redundancy strategy in each individual subsystem. Non-Dominated Sorting Genetic Algorithm II (NSGA-

II) was implemented for solving the problem. The study showed that mixed strategy outperforms active and 

standby strategies alone. In another study, Abouei Ardakan et al. [7] addressed RAP in series–parallel systems 

with mixed active and cold standby strategy. They formulated the problem as a non-linear mixed integer 

programming model. The problem was subject to cost, weight and volume constraints. They developed a 

modified version of Genetic Algorithm (GA) to solve the problem. Results revealed that the mixed strategy 

provide greater reliability than active and standby counterparts. In 2017, Aghaei et al. [8] studied the problem 

of maximizing reliability in a k-out-of-n series system with non-repairable components. They decision 

variables were redundancy strategy and the number of components in each subsystem. The problem was 

solved using a modified version of GA and an exact method based on integer programming. The results 

revealed that using the proposed approach leads to significant improvements in system reliability. In another 

study, Gholinezhad and Hamadani [9] developed a new model for reliability optimization of a Series–parallel 

system with mixed redundancy strategy and component mixing. The proposed model allowed for a subsystem 

to simultaneously have several active and standby components. The problem was subject to cost and weight 

constraints. GA was implemented to find the optimal solutions for the problem. It was found that the 

reliability of subsystems improves by using mixed redundancy strategy and component mixing. In 2019, 

Ouyang et al. [10] studied RAP with mixed redundancy strategy and heterogeneous components. The aim 

was to maximize system reliability under cost and volume constraints. They proposed an improved particle 

swarm optimization algorithm to solve the problem. The study demonstrated that design flexibility provides 

higher system reliability and has a substantial impact on the optimal system configuration. In another study, 

Peiravi et al. [11] investigated the reliability optimization problem of a series-parallel systems with a novel 

redundancy strategy called K-mixed. K-mixed strategy is known as a general form of the mixed strategy in 

which the starting point of active components is time zero. The main advantage of the K-mixed strategy over 

the previously introduced mixed strategies is its less sensitivity to switch reliability. The problem was 

formulated using a mathematical model with two decision variables including the redundancy strategy and 

the number of components in each subsystem. Results showed that the K-Mixed strategy delivers higher 
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reliability than its mixed complements. In a study conducted by Hadipour at al. [12], redundancy allocation 

of series-parallel systems with repairable components was considered under mixed active and warm standby 

strategy. The objective functions were maximizing the minimum of mean time to failure of system and 

minimizing cost. The problem was formulated using a non-linear integer programming model under a number 

of system-level constraints. Meta-heuristic Multi Objective Water Flow Algorithm (MOWFA) was used to 

solve the problem. Although mixed strategy provides higher reliability and lower weight and cost, it requires 

longer computation time. In 2020, Peiravi et al. [13] proposed a Continuous Time Markov Chain (CTMC) 

model for reliability optimization problems in series–parallel systems with mixed active and cold standby 

redundancy strategy. Compared to conventional methods, the proposed model shortened the computation 

time and found better solutions with higher reliability values. In a study by Gong et al. [14], redundancy 

allocation in k-out-of-n series systems with mixed warm and cold standby components was investigated. The 

goal was to maximize system availability and minimize cost. Markov model and simulation studies were 

utilized to solve the problem. The results indicated that using warm standby components protects the system 

from sudden failure, but increases the system cost. Since mixed warm and cold standby strategy allows for 

reducing the risk of system failure with lower costs, it could be considered as a more economically feasible 

alternative. In 2021, Sadeghi et al. [15] studied reliability optimization for a series-parallel systems with a choice 

of redundancy strategy and the possibility of using heterogeneous components in each subsystem. The 

problem was formulated assuming that component time-to-failure follows Erlang distribution. Switch time-

to-failure was also assumed to be exponentially distributed. The obtained differential equations were solved 

by using a CTMC model. The introduced equations could efficiently compute the system reliability. In a study 

by Chambari et al. [16], RAP in series-parallel systems was formulated using a bi-objective simulation 

algorithm for maximizing reliability and minimizing cost. The redundancy strategy could be selected among 

active, cold-standby, mixed, or k-mixed strategies. The study exploited NSGA-II to find Pareto fronts. The 

results revealed the satisfactory performance of the proposed approach in optimizing system reliability and 

cost. Recently, Reihaneh et al. [17] proposed an exact Branch-and-Price (BP) algorithm for the RAP in a 

series–parallel system with mixed redundancy strategy and heterogeneous components. The proposed 

algorithm could solve the RAP with either active, standby or mixed strategies significantly faster than other 

heuristics methods. The calculated reliability of the system with mixed strategy was higher than those obtained 

for standby and active strategies. 

Table 1. Literature review of RAP in systems with mixed redundancy strategy. 

Authors (Year) System 
Configuration 

System 
Reparability 

Redundancy 
Strategy 

Objective 
Function(s) 

Solution 
Methods 

Ardakan and 
Hamadani [5] 

Series–parallel Non-repairable Mixed active 
and cold 
standby 

Maximizing 
reliability 

Genetic 
algorithm 

Abouei 
Ardakan et al. 
[6] 

Series–parallel Non-repairable Mixed active 
and cold 
standby 

Maximizing 
reliability and 
minimizing cost 

NSGAII 

Abouei 
Ardakan et al. 
[7] 

Series–parallel Non-repairable Mixed active 
and cold 
standby 

Maximizing 
reliability 

Genetic 
algorithm 

Aghaei et al. [8] k-out-of-n series Non-repairable Mixed active 
and cold 
standby 

Maximizing  
reliability 

Genetic 
algorithm 

Gholinezhad 
and Hamadani 
[9] 

Series–parallel Non-repairable Active, cold-
standby or 
mixed 

Maximizing  
availability 

Genetic 
algorithm  
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Table 1. Continued. 

 

The reviews of the preceding studies show that using mixed redundancy strategies improves the system 

performance and provides design flexibility. From the available studies, it seems that little attention has been 

paid for solving RAP in k-out-of-n repairable systems with the aim of maximizing the availability. In this 

study, for the first time, a bi-objective model is proposed to simultaneously maximize the availability and 

minimize the cost of a k-out-of-n system with mixed redundancy strategy.  

The outline of the paper is as follows. In Section 2, the problem is described in details along with model 

formulation. Section 3 describes the solution methodology used to solve the problem.  Computational results 

are presented in Section 4. Finally, the conclusion of the study is presented in Section 5. 

Authors (Year) System 
Configuration 

System 
Reparability 

Redundancy 
Strategy 

Objective 
Function(s) 

Solution 
Methods 

Ouyang et al. 
[10] 

Series–parallel Non-repairable Active, cold-
standby or 
mixed 

Maximizing  
reliability 

Stochastic 
Perturbation 
Particle Swarm 
Optimization 
(SPPSO) 

Peiravi et al. 
[11] 

Series–parallel Non-repairable K-mixed  Maximizing  
reliability 

Genetic 
algorithm 

Hadipour et al. 
[12] 

Series–parallel Repairable Mixed active 
and warm 
standby 

Maximizing the 
minimum of mean 
time to failure of 
system and 
minimizing cost 

Multi objective 
water flow 
algorithm 

Peiravi et al. 
[11] 

Series–parallel Non-repairable Mixed active 
and cold 
standby 

Maximizing  
reliability 

Genetic 
algorithm 

Gong et al. [14] k-out-of-n series Repairable Mixed warm 
and cold 
standby 

Maximizing  
availability and 
minimizing cost 

Markov model 
and simulation 
studies 

Sadeghi et al. 
[15] 

Series–parallel Non-repairable Active, cold-
standby or 
mixed 

Maximizing  
reliability 

Solving 
differential 
equation 
obtained by 
Continuous-time 
Markov chain 

Chambari et al. 
[16] 

Series–parallel Non-repairable Active, cold-
standby, 
mixed, or k- 
mixed 

Maximizing  
reliability and 
minimizing cost 

NSGAII 

Reihaneh et al. 
[17] 

Series–parallel Non-repairable Mixed active 
and cold 
standby 

Maximizing  
reliability 

Branch-and-
price algorithm 

This study k-out-of-n series Repairable Mixed active 
and cold 
standby 

Maximizing  
availability and 
minimizing cost 

NSGAII 
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2|Problem Description 

This article addresses RAP in a series–parallel k-out-of-n system with active/cold redundancy strategy. The 

system studied in this paper is adapted from the system proposed by Coit and Liu [18]. It consists of S 

subsystems, each of which in a k-out-of-n configuration (Fig. 1). The redundant components of each 

subsystem are configured in either active or cold standby mode. 

 

Fig. 1. System consisted of S subsystems in k-out-of-n configuration. 

The proposed approach models the problem using a bi-objective formulation to maximize the availability and 

minimize the cost of the system. As mentioned above, unlike reliability, availability is less studied in the 

literature. Therefore, finding an exact formula for computing the system availability of a k-out-of-n system is 

a challenging issue. The challenge is doubled when mixed redundancy strategy comes into account.  

A few studies have formulated availability for systems with standby or active redundant components. 

However, these studies have limitations. In 2002, Wang and Loman [19] proposed a formula to compute the 

availability in a k-out-of-n system with cold standby components. Although they mentioned that the formula 

has been obtained by Markov model, the proof of the formula is not given in their article. In 2017, Carpitella 

et al. [3] proposed a general formula to calculate availability of k-out-of-n systems with active redundant 

components. To prove the formula, the authors employed Markov chains of a 2-out-of-3 system and 

generalized the result to k-out-of-n systems. Here, we have used these formulae and adopted them for the 

system under study. The proof of each formula has been presented in Appendix 1 and Appendix 2. 

2.1|Assumptions 

 The following assumptions have been considered regarding the active subsystems: 

 The subsystems are in k-out-of-n configuration, meaning that at least k components (k≤n) have to operate 

concurrently to assure that the subsystem is in the functioning state. Therefore, if (n - k + 1) components fail the 

subsystem fails and therefore cause the whole system fail.   

 All of the components are independent, identical, and repairable. 

 The failure rate (λ) and repair rate (μ) of the components are exponentially distributed. 

 No constraints are considered for the availability of maintenance crews. 

The assumptions for cold subsystems are as follows: 

 The subsystems are implemented in an (N-1)-out-of-N:G configuration, meaning that each subsystem functions if at 

least (N-1) components function. Since an exact formula is not available for the availability of k-out-of-n systems with 

cold standby subsystems, this special configuration is considered. 

 Although (N-1) components are enough to cover the load, one extra active component is added to decrease the failure 

rate of the subsystem.  
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 Another component is also added in cold standby. Adding the cold standby component is necessary to keep the system 

in functioning state all the time. The cold standby component will replace any failed component.  

 The failed component will be used as the standby component after being repaired.  

 The components are independent and identical. 

 The failure rate (λ) and repair rate (μ) of the components follow an exponential distribution. 

 No load sharing is performed, meaning that changing the load level does not change the failure rate of the components. 

 Switch is assumed to be perfect. 

 No failure would occur during the time needed to activate the cold standby component. 

2.2|Model Formulation 

The studying system is subject to weight constraint and the objective is to maximize system’s availability, 

while minimizing the overall cost. Since the subsystems are interconnected in series, the system’s cost is 

obtained from the sum of the active subsystems’ cost (CA) and standby subsystems’ cost (CS) (i.e. C = CA + 

CS). The system’s availability is calculated by multiplying the subsystems’ availabilities (A = AS × AA). The 

parameters used in the model are presented in Table 1. 

2.2.1|Parameters 

P: reliability of switch. 

τ : time needed to activate the standby component. 

jaλ : failure rate of the active component in standby subsystems. 

jbλ : failure rate of the cold standby component in standby subsystems. 

W: maximum allowable system weight. 

nmax,j: maximum number of components of each subsystem. 

j j j jq ,a , b , r : coefficients of the cost function. 

2.2.2|Decision variables 

 nj: number of components in subsystem j. 

Type: redundancy strategy (in mixed active/cold configuration). 

 2.2.3|Cost functions 

The cost functions of the subsystems are adapted from the model proposed by Elegbede and Adjallah [20]. 

In their approach the cost of the subsystems includes failure and repair rates of the components. Thus, the 

technical performance of the system is taken into account while estimating the cost. For active subsystems 

the cost function is formulated according to Eq. (1). 

where aj, bj, qj, and rj are real numbers such that: aj, bj, qj > 0 and rj < 0. These coefficients could be obtained 

from the maintenance databases of organizations.  

We have modified Eq. (1) to obtain the cost function of cold standby subsystems according to Eq. (2). 

Using Eq. (1) and Eq. (2), the cost of the system can be expressed  according to Eq. (3). 

 j jr q

A j j j j j

j A

C n a λ b μ ,


   (1) 

  j j j

j j

r q r

S j j a j j j j b

j S

C n a λ n 1 b μ a λ .


     (2) 
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2.2.4|Availability functions 

To calculate the availability of the k-out-of-n active subsystems,  the exact formula proposed by Carpitella et 

al. [3] is used as presented in Eq. (4) (see Appendix 1 for the proof).  

For cold standby subsystems, availability is obtained for (n-1)-out-of-n configuration by adopting the formula 

suggested by Wang and Loman [19] according to Eq. (5) (see Appendix 2 for the proof).  

With respect to Eq. (4) and Eq. (5), the availability of the studying system is given by Eq. (6). 

2.2.5|The proposed mathematical model 

The aim of this study is to determine the maximum availability and minimum cost of a k-out-of-n system 

subject to a constraint on weight of the system. The model is formulated according to Model (1).   

The latter two constraints determine the number of components (nj) in active and cold-standby subsystems. 

As for active subsystems, the configuration is k-out-of-n, therefore kj≤nj. nmax,j is the upper bound for nj 

and is usually selected based on practical restrictions. On the other hand, the configuration of cold-standby 

subsystems, is (N-1)-out-of-N:G, which is possible only if nj=kj+1 or nj=kj+2. 

3|Solution Methodology 

The methodology to solve the multi-objective optimization problem of this study includes two steps: 

Finding non-dominated solutions using NSGAII and selecting the best solution. 

    j j j j j

j j

r q r r q

j j a j j j j b j j j j j

j S j A

C(n) n a λ n 1 b μ a λ n a λ b μ .
 

        (3) 

 

     

n

n ii

i k

A N

n i k 1 n k 1i

i k

n
μ λ

i
A .

nn
μ λ μ λ

k 1i





   



  
  

  
   

   
     




 (4) 

   
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2

j j a j j a b j

2 2 2 3 2 2 2 2

j a j j j a j j j a j a b j a j j j a b a j j b j a j j

S

1 n n 1 λ μ n λ λ Pμ
.

9n λ μ n 4n 1 λ μ n n 1 λ 3n λ λ μ λ μ P n n 1 λ λ Pλ μ 6μ λ n λ μ τ μ
A

      
   


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(5) 

   

          

 

 

j j j

j j j j j j j j j j j

j

j

j

j

j

j

2
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n ij i
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i k

n
n ij i

j j

i k

1 n n 1 λ μ n λ λ Pμ

9n λ μ n 4n 1 λ μ n n 1 λ 3n λ λ μ λ μ P n n 1 λ λ Pλ μ 6μ λ n λ μ τ μj S

n
μ λ

i

n
μ λ

i
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(6) 

 

 

 

 

j j

j A,S

j j j j max, j

j j j

n w W,

j A : n k ,k 1,k 2,...,n ,

j S: n k 1,k 2 .

max A n ,

 

min C n ,





   

   

   
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I. Finding non-dominated solutions 

The first step to solve the problem is to find the non-dominated solutions. For this purpose, a NSGA-II is 

used. Formulated by Deb et al. [21], NSGA-II is a metaheuristic algorithm that 

follows a parallel search strategy to find the optimal solutions. It uses an elitist approach and specific 

adaptation assignment rules to determine the rank and the distance of each solution from the others. NSGA-

II could provide solutions for any number of objectives with any number of constraints. The best solutions 

found in each iteration are saved into a Pareto set. The Pareto set of optimal solutions found by NSGA-II is 

preferable instead of a single solution because it offers more choices to decision-makers. Moreover, NSGA-

II preserves the diversity of the solutions using a sharing method to explore different areas of the Pareto 

front. This prevents stopping at local optimal points and limiting to certain areas of the solution space [22].  

The consecutive steps of NSGA-II are as follows: 

Step 1. Chromosome definition. 

Step 2. Setting the fitness function. 

Step 3. Setting the crossover and mutation mechanisms. 

Step 4. Setting the algorithm termination condition. 

Step 5. Generating the initial population. 

Step 6. Creation of the offspring population based on the crossover and mutation mechanisms. 

Step 7. Selection of the chromosomes with the largest fitness function as the parents of the next generation. 

Step 8. Obtaining the non-dominated Pareto fronts by combining the newly generated population with the 

previous one and sorting the solutions. 

Step 9. Repeating Steps 6-8 until the termination condition is met [22]. 

NSGA-II has been extensively used for solving multi-objective problems, including the redundancy- 

allocation problem [23].  

II. Selection of the best solution 

Pareto front provides a complete representation of the optimal solution space. Based on the decision criteria, 

decision makers can choose the most suitable solution among the non-dominated set of solutions. In this 

study, the best solution is selected by TOPSIS1, which is a multi-criteria decision making method. TOPSIS 

presents an ordered ranking of the solutions by calculating the distance of each solution from the positive 

ideal and the negative ideal solutions.  

The methodology to find the best solution for RAP in k-out-of-n systems has been described clearly by 

Carpitella et al. [3]. The steps for selecting the best solution from Pareto front using TOPSIS are as follows: 

I. Evaluation of solutions: each solution is given a score. The score of the solution i for the objective function 

j is shown by gij. Here, j could be availability or cost. 

II. Determining the evaluation criteria and weighting them. 

III. Calculating the normalized and the weighted decision matrix using the following equation: 

where wj is the weight of the criterion j, and zij is the score of the solution i under the criterion j. zij is 

normalized using the following equation: 

1 Technique for order preference by similarity to ideal solutions 

Uij = Wj. Zij, for alli, for allj,  
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IV. Determining the positive (A*) and the negative ideal point (A-) using the following equations: 

where  I' and I'' are the sets of criteria that must be maximized and minimized, respectively. 

V. Calculating the distance of each solution i from A* and A- using the following equations. 

VI. Evaluation of each solution i based on its proximity to A* using the closeness coefficient Ci* 

VII. Ranking the Pareto solutions based on closeness coefficients. For two generic solutions i and z, if Ci* ≥ Cz*, 

solution i is preferred over solution z. 

4|Computational Results 

The main purpose of this research is to find the optimal configuration in k-out-of-n systems with active/cold 

standby redundancy strategy. To investigate the performance of the proposed method, a system composed 

of 14 subsystems are considered. Each subsystem (j) is characterized by the minimum number of components 

required to keep the subsystem in the functioning state (kj), the failure rate (λj), the repair rate (μj), the 

allowable weight of the components (wj), and the type of the redundancy strategy in each subsystem (active 

or standby) which are summarized in Table 1. Each subsystem can be of active (A) or standby (S) strategy. kj 

is selected from {1, 2, 3} for each subsystem. 

Table 1. Subsystems’ data [18]. 

 

 

 

 

 

 

 

 

 

The values of the parameters used in the proposed model are presented in Table 2. The maximum number of 

components of each subsystem (nmax,j) is set to six. The objective is to maximize system availability and 

minimize system cost given constraint on system weight (W = 170).  

Zij =
gij

√∑ gij
2n

i=1

, for alli, for allj. 
 

A*=(U1
∗, … , Uk

∗ = {(……………………….  

Si
∗ = √∑ (Uij − Uj

∗k
i=1 . 

Si
− = √∑ (Uij − Uj

−k
i=1 . 

 

Ci
∗ =

Si
−

Si
− + Si

∗ ,      0 ≤ Ci
∗ ≤ 1for all i.  

j kj Strategy λj µj wj 

1 2 A 0.00532 0.43244 3 
2 3 S 0.00818 0.3454 8 
3 3 A 0.0133 0.29342 7 
4 2 S 0.00741 0.26886 5 
5 1 A 0.00619 0.24052 4 
6 3 S 0.00436 0.23914 5 
7 3 S 0.0105 0.23768 7 
8 3 S 0.015 0.23248 4 
9 2 S 0.00268 0.20888 8 
10 3 S 0.0141 0.19466 6 
11 2 S 0.00394 0.19064 5 
12 1 S 0.00236 0.1869 4 
13 2 A 0.00215 0.06964 5 
14 3 S 0.011 0.04167 6 
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Table 2. Parameters used in the model [19], [20]. 

 

 

 

 

 

 

 

 

 

 

To solve the proposed model, NSGA-II is coded in the MATLAB®.  The program was run on an Intel Core 

i5-480M @ 2.67GHz CPU with 4 GB of RAM. Briefly, each solution was encoded using a 3 × 14 

chromosome (Fig. 2). The first and the second rows of the solution represent the subsystems’ number and 

the relevant redundancy strategies, respectively. The third row represents the number of the allocated 

components for each subsystem. 

Fig. 2. Encoding solution as a chromosome representation. 

The initial population was randomly generated from a population size of N = 100. Parent chromosomes were 

selected randomly from the initial population. To generate offsprings, the max-min crossover operator was 

implemented with crossover rate of 0.9. The crossover operator uses a binary 3 × 14 random matrix to 

exchange the respective values between parents (Fig. 3). 

 

Fig. 3. Example of crossover operator. 

To diversify the new population, the values within each solution matrix were changed randomly using a 

mutation operator. The mutation rate (pm) is calculated as 
1

𝑑
, where d is the number of decision variables [21]. 

Since d = 28, pm was set to 0.036. An example of a mutation operator is shown in Fig. 4. 

 

 

 

 

 

Parameters and Their Value 

P 0.95  

τ 10min 0.16hr   

jaλ  

j

j

a j

b

λ λ
λ

10 10
   

 jr 0.8 0.4,0.2,1,0.8,1.2,0.9,1.4,1.1,0.5,1.3,0.7,0.6,0.1,0.3    

 

 

 

j

j

j

q 0.85 0.4,0.2,1,0.8,1.2,0.9,1.4,1.1,0.5,1.3,0.7,0.6,0.1,0.3

a 0.01 1,4,3,2,5,7,8,6,10,9,13,11,12,14

b 0.1 0.4,0.2,1,0.8,1.2,0.9,1.4,1.1,0.5,1.3,0.7,0.6,0.1,0.3

 

 

 

 

W = 170 
nmax,j = 6 
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Fig. 4. Example of mutation operator. 

The maximum iterations of 100 is determined as the stopping condition to terminate NSGA-II. The 

parameters used for the NSGA-II procedure are summarized in Table 3. 

Table 3. Parameters used for NSGA-II. 

 

 

 

 

To validate the performance of the proposed method for systems with mixed active/standby redundancy 

strategies, the results are compared with the results of applying the proposed method to systems with active 

strategy and also systems with, standby strategy. After obtaining the Pareto set of solutions, TOPSIS decision 

making method is employed to rank and prioritize the non-dominated solutions, based on their distances 

from the best and the worst solutions. Each solution is assigned a score which indicates the ranking index of 

the solution. The results are shown in Tables 4-6 respectively for active, standby and active/standby strategies. 

 

 

Parameters Values 

Initial population size 100 
Crossover rate 0.9 
Mutation rate 0.07, for active and cold standby strategies 

0.036, for mixed strategy 
Number of iterations 100  
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The solutions with highest scores for systems with active, cold standby, and mixed redundancy strategies are 

showed in Fig. 5 and Table 7. The results indicate that using the active redundancy strategy leads to low levels 

of availability. In other words, constrained cost and weight do not allow to achieve high availability with active 

configuration. In contrast, both cold-standby and mixed redundancy strategies provide more than 0.999 

availability. The total cost of the system with cold and mixed configuration is 279.15101 and 279.5973006, 

respectively. The data demonstrate that both strategies perform well in providing maximum availability and 

minimum cost. Moreover, despite the use of active components, the system cost with mixed strategy remains 

within the range of the cost of system with cold standby strategy. 

Fig. 5. Solutions with highest scores for systems with Active, Cold standby, and Mixed 

redundancy strategies. 
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Table 7. Comparison of the solutions with highest scores for systems with 

active, cold standby, and mixed redundancy strategies. 

 

 

 

 

 

 

 

 

 

 

 

5|Conclusion 

The present study provided an approach to find the optimal configuration in k-out-of-n repairable systems 

with active and cold redundancy strategies. The purpose of this study was to maximize system availability 

while minimizing system cost. Using Markov chains, an exact formula was proposed to calculate the 

availability of systems with active and cold standby subsystems. An adapted formula was also proposed to 

calculate system cost. NSGA-II was used to deal with the proposed bi-objective model.  To choose the most 

suitable solution, the obtained Pareto solutions, which met both objectives, were ranked by TOPSIS method.  

To validate the performance of the proposed method for systems with mixed active/standby redundancy 

strategies, the results are compared with the results of applying the proposed method to systems with active 

strategy and also systems with cold standby strategy. The results show that both cold standby and mixed 

redundancy strategies provide high levels of availability with minimum cost.  

The following aspects are suggested for future studies: 

I. Investigating the proposed method for multi-state systems. 

II. Consideration of uncertainties in model parameters.  

III. Selection of maintenance strategies considering the system's reparability. 

IV. Implementation of hybrid meta-heuristic algorithms to solve the proposed problem. 
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Supplementary Material 

Appendix 1 

Availability formula in in k-out-of-n systems with active components 

Few studies have offered general formula to calculate availability. Carpitella et al. [3] have proposed the 

following formula to calculate availability of k-out-of-n systems with active redundant components.  

As the article shows, Markov chains have been used to obtain the formula for a 2-out-of-3 system. Then, the 

formula has been generalized to k-out-of-n systems. Here, we have proved the formula for an (n-1)-out-of-n 

system: 

Proof: consider the following Markov graph (Fig. A1) of an (n-1)-out-of-n system. 0 and 1 represent the 

functioning states, and 2 is the failure state. In 0, all the n components are available.  

 

Fig. A1. Markov graph of an (n-1)-out-of-n system. 

The possible transitions of the system between the states are summarized in Table A1. After Δt, the system 

will be in S0 state if one of the following scenarios occurs: 

I. It has previously been in S0 and has remained in this state. 

II. It has moved from S1 to S0.  

Table A1. Transition matrix of an (n-1)-out-of-n system. 

 

 

 

 

According to the transition matrix: 

It is clear that the time derivative of the probability of the system being in S0 is equal to the probability of 

entering S0 minus the probability of exiting it: 

Similarly, based on the transition matrix: 
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  Future States 

  S0 S1 S2 

Present 
States 

S0 1-nλΔt nλΔt 0 

S1 µΔt 1 −µΔt-(n-1)λΔt (n-1)λΔt 
S2 0 2µΔt 1 − 2µΔt 

P0(t + Δt)  =  (1 − nλΔt) P0(t)  +  µΔt P1(t).  

dP0(t)

dt
=  −nλP0(t) +  µ P1(t). (S1-1) 
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Therefore, for S1: 

Also, for S2: 

and 

The time-dependent availability can be calculated by solving the above differential equations (S1-1, S1-2, and 

S1-3). The stationary availability is calculated over long enough periods of time (t→∞). In this case, since the 

probability of the subsystem being in any of the possible states, Pi (t), takes a constant value, therefore: 

As a result, the above-mentioned probabilities will be time-independent functions, and: 

The total probability of the system in different possible states is equal to one: 

Equation (S1-4) suggests that: 

From equations (S1-6) and (S1-6) we conclude: 

By placing (S1-8) and (S1-9) in (S1-7), the following equation is obtained: 

As the result; 

Similarly, the following is obtained: 

P1(t + Δt) =  nλΔt P0(t) + (1 − µΔt − (n − 1)λΔt) P1(t) + 2µΔt P2(t).  

dP1(t)

dt
=  nλP0(t) − µP1(t) − (n − 1)λP1(t) + 2µP2(t). (S1-2) 

P2(t + Δt) =  (n − 1)λΔt P1(t) + (1 − 2µΔt) P2(t).  

dP2(t)

dt
= (n − 1)λP1(t) − 2µP2(t). (S1-3) 

lim
t→∞

dPi(t)

dt
 =  0. 

(S1-1) 

lim
t→∞

dP0(t)

dt
 = −nλP0(∞) +  µ P1(∞) = 0.  (S1-4) 

lim
t→∞

dP1(t)

dt
 = nλP0(∞) − µP1(∞) − (n − 1)λP1(∞) + 2µP2(∞) = 0.  (S1-5) 

lim
t→∞

dP2(t)

dt
 = (n − 1)λP1(∞) − 2µP2(∞) = 0.  (S1-6) 

P0 +  P1 +  P2 =  1. (S1-7) 

P1 =
Nλ

µ
P0. (S1-8) 

P2 =  
N(N − 1)λ2

2µ2
 P0. (S1-9) 

P0 +
Nλ

µ
P0 +

N(N − 1)λ2

2µ2
 P0 = 1.  

P0 =  
2µ2

2µ2 + 2µNλ + N(N − 1)λ2
. (S1-10) 

P1 =  
2µNλ

2µ2 + 2µNλ + N(N − 1)λ2
. (S1-11) 
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Since the subsystem is only available in P0 and P1, therefore: 

By placing (S1-10) and (S1-11) in (S1-12), the stationary availability of the subsystem is obtained as follows: 

The obtained formula can be generalized to obtain stationary availability in active redundancy subsystems 

with k-out-of-n configuration. The equation is as follows: 

Appendix 2. Availability formula in in k-out-of-n systems with cold standby components 

To the best of our knowledge, no precise formula has been proposed to calculate the availability of k-out-of-

n systems with cold standby components. In a study by Wang and Loman [19] a formula has been proposed 

to obtain the availability of (n-1)-out-of-n:G systems with cold redundant components. Although the authors 

have mentioned that the formula is obtained by solving the Markov model, but they have not proved the 

formula. We prove the formula by using the Markov chain and the transition matrix. 

Proof: consider the following Markov graph (Fig. A2) of an (n-1)-out-of-n:G system. 0-3 represent the 

functioning states, and 4 is the failure state.  

 

Fig. A2. Markov graph of an (n-1)-out-of-n:G system. 

Table A2 shows the transitions of the system between the states. 

AS = P0 + P1. (S1-12) 

AS =  
2µ2 + 2µNλ

2µ2 + 2µNλ + N(N − 1)λ2
. (S1-13) 
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Table A2. Transition matrix of an (n-1)-out-of-n:G system. 

 

 

 

 

 

According to the transition matrix: 

The time-dependent availability of the subsystem can be obtained by solving the Eqs. (S2-1)-(S2-5). However, 

the stationary availability is calculated when t→∞. In this case, the probability of the system being in any of 

the possible states (Pi) takes on a fixed value, therefore: 

As a result, Pi(t) functions will be time-independent and Eq. (S2-1) will be as follows: 

Therefore, 

In a similar way, it follows from Eq. (S2-2): 

  Future States 

  S0 S1 S2 S3 S4 

Present states S0 1-nλaΔt-λbΔt nλaΔt λbΔt 0 0 
S1 0 1 −

P

τ
Δt- 

1−P

τ
Δt 

P

τ
Δt 

1−P

τ
Δt 0 

S2 µΔt 0 1 −µΔt-nλaΔt nλaΔt 0 

S3 0 0 2µΔt 1-(n-1)λaΔt -2µΔt (n-1)λaΔt 
S4 0 0 0 3µΔt 1-3µΔt 

P
0
(t+Δt) = (1-nλ

a
Δt-λ

b
Δt) P

0
(t) + µΔt P

2
(t),  

lim
Δt→0

P0(t + Δt) − P0(t)

Δt
=  −nλaP0(t) − λbP0(t) +  µΔt P2(t). 

(S2-1) 

P1(t + Δt) =  nλaΔt P0(t) + (1 −
P

τ
Δt- 

1−P

τ
Δt) P1(t), 

lim
Δt→0

P1(t+Δt)−P1(t)

Δt
=  nλaP0(t) −

1

τ
P1(t).  

(S2-2) 

P2(t + Δt) =  λbΔt P0(t) +
P

τ
 Δt P1(t) + (1-µΔt-nλaΔt) P2(t) + 2µΔt P3(t), 

lim
Δt→0

P2(t+Δt)−P2(t)

Δt
=  λbP0(t) +

P

τ
P1(t) - µP2(t) - nλaP2(t) + 2µP3(t), 

(S2-3) 

P3(t + Δt) =  
1−P

τ
 Δt P1(t) + nλaΔt P2(t) + (1-(n-1)λaΔt-2µΔt) P3(t) + 3µΔt P4(t), 

lim
Δt→0

P3(t+Δt)−P3(t)

Δt
=  

1−P

τ
P1(t) + nλaP2(t) − (n − 1)λaP3(t) − 2µP3(t) + 3µP4(t).

(S2-4) 

P4(t + Δt) = (n − 1)λaΔt P3(t) + (1-3µΔt) P4(t), 

lim
Δt→0

P4(t + Δt) − P4(t)

Δt
= (n − 1)λaP3(t) − 3µP4(t).

(S2-5) 

lim
t→∞

dPi(t)

dt
 = 0. 

 

−NλaP0(t) − λbP0(t) +  µΔt P2(t) = 0.  

P2 =  
Nλa + λb

µ
 P0. (S1-6) 
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It also follows from Eq. (S2-3): 

Similarly, it results from Eq. (S2-4): 

The total probability of the possible states is equal to one: 

By placing Eqs. (S2-6)-(S2-9) in the latter Equation, the following relation is obtained: 

Which results in: 

In the system of the study, availability is obtained as follows: 

By placing Eq. (S2-10) in Eqs. (S2-6)-(S2-9) and rewriting the latter equation, we conclude: 

 

 

P1 = NλaτP0. (S1-7) 

P3 =  
N2λa

2 + µNλa + µλb + Nλaλb − µλb − PNµλa

2µ2
 P0. (S1-8) 

P4 =  
(N − 1)λa (N2λa

2 + µNλa + µλb + Nλaλb − µλb − PNµλa)

6µ3
 P0. (S1-9) 

P0 + P1 + P2 + P3 + P4 = 1. 
 

6µ3 + 6µ3Nλaτ + 6µ2(Nλa + λb) + 3µ(N2λa
2 + µNλa + µλb + Nλaλb − µλb − PNµλa) + (N − 1)λa(µNλa + µλb + N2λa

2 + Nλaλb − µλb − PNµλa)

6µ3
P0 = 1.  

P0 = 

6µ3

6µ3 + 6µ3Nλaτ + 6µ2(Nλa + λb) + 3µ(N2λa
2 + µNλa + Nλaλb − PNµλa) + (N − 1)λa(µNλa + N2λa

2 + Nλaλb − PNµλa)
 . 

(S1-10) 

AS = P0 + P1 + P2 + P3.      

AS = 

6µ3 + 6µ3Nλaτ + 6µ2(Nλa + λb) + 3µ(N2λa
2 + µNλa + Nλaλb − PNµλa)

6µ3 + (N − 1)N2λa
3 + N(N − 1)λa

2λb − (N − 1)NPµλa
2 + 4N2λa

2µ − Nλa
2µ + 6µ3Nλaτ + 9Nµ2λa + 6µ2λb + 3Nµλaλb − 3µ2NλaP

. 
(S1-11) 


