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Abstract

Redundancy allocation problem (RAP) is one of the most important issues in reliability engineering to increase the reliability of a
system. The design of the redundant systems involves determining the redundancy strategies, redundancy levels, the type of
components, and system configuration. The redundancy strategy can be active, standby, or active/standby. This study for the first
time provides an approach to determine the optimal configuration in k-out-of-n repairable systems with mixed active/cold standby
redundancy strategy to simultaneously maximize system availability and minimize system cost. To deal with this combinatorial
problem, a Non-Dominated Sorting Genetic Algorithm II (NSGA-II) is employed. To find the most suitable solutions amongst
Pareto solutions, a multi-criteria decision making method, TOPSIS, is employed. To validate the performance of the proposed
method for systems with mixed active/standby redundancy strategies, the results are compared with the results of applying the
proposed method to systems with active strategy and also systems with cold standby strategy. The results show that both cold
standby and mixed redundancy strategies provide high levels of availability. Using mixed redundancy strategy is preferred over the
active and cold standby counterparts, because it delivers design flexibility and provides maximum availability. Interestingly, active
components used in the proposed mixed strategy do not impose extra costs.

Keywords: Redundancy allocation problem, Active/cold standby, Availability analysis, Non-dominated sorting genetic
algorithm, Markov chains, TOPSIS decision making method.

1| Introduction

The modern industrial systems consist of various components with complex relationships. The continuous
operation of these systems is required to achieve the highest level of productivity and profitability. During
the recent decades, a considerable attention have been paid to develop maintenance and repair strategies that
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allow for managing the inevitable failures of systems and their components [1]. In this context, two
approaches have been developed to improve the reliability of the systems; one by increasing the reliability of
the existing components, and the other by allocating redundant components. The optimal system design is
determined by solving the Redundancy Allocation Problem (RAP). RAP is an NP-hard problem,
which determines the most appropriate redundancy strategies and the optimal number of the redundant
components given system-level design constraints [2]. The majority of the studies addressing RAP have
studied non-repairable systems and focused on reliability as a measure of system’s performance. However, in
systems with repairable components, analyzing availability could better help to evaluate maintenance
management and adopt more efficient strategies [3]. The systems involve subsystems with either standby or
active redundancy strategy [4]. The standby strategy improves the system’s reliability with minimum
depreciation of the components; however, this strategy poses limitations due to complications of failure
detection and switching mechanism of the redundant components. On the other hand, the use of active
strategy is not always economically feasible due to the high depreciation rate of the components. To overcome
these limitations and prevent interruptions in systems’ performance, mixed strategies including both active
and standby redundancies have been proposed [5], [6]. In this approach, active redundancy is used for critical
components of the system, and the other components are used in standby state. During the last decade, the
mixed redundancy strategy has increasingly been used to develop novel models for the RAP. Some of the
recent studies addressing RAP in systems with mixed redundancy strategy are summarized in Table 1. One of
the pioneering studies in this field was conducted by Ardakan and Hamadani [5]. They proposed a novel
model for RAP with choice of redundancy strategies. The mixed active and cold standby strategy provided
higher reliability compared to conventional active or cold strategies. Besides, it delivered more flexibility to
design complex systems with improved performance. In 2015, Abouei Ardakan et al. [6] developed a mixed
active and cold standby strategy for a series—parallel system with non-repairable components. The proposed
non-linear model considered reliability and cost as objective functions. The model allowed for selection of
the redundancy strategy in each individual subsystem. Non-Dominated Sorting Genetic Algorithm IT (NSGA-
IT) was implemented for solving the problem. The study showed that mixed strategy outperforms active and
standby strategies alone. In another study, Abouei Ardakan et al. [7] addressed RAP in series—parallel systems
with mixed active and cold standby strategy. They formulated the problem as a non-linear mixed integer
programming model. The problem was subject to cost, weight and volume constraints. They developed a
modified version of Genetic Algorithm (GA) to solve the problem. Results revealed that the mixed strategy
provide greater reliability than active and standby counterparts. In 2017, Aghaei et al. [8] studied the problem
of maximizing reliability in a k-out-of-n series system with non-repairable components. They decision
variables were redundancy strategy and the number of components in each subsystem. The problem was
solved using a modified version of GA and an exact method based on integer programming. The results
revealed that using the proposed approach leads to significant improvements in system reliability. In another
study, Gholinezhad and Hamadani [9] developed a new model for reliability optimization of a Series—parallel
system with mixed redundancy strategy and component mixing. The proposed model allowed for a subsystem
to simultaneously have several active and standby components. The problem was subject to cost and weight
constraints. GA was implemented to find the optimal solutions for the problem. It was found that the
reliability of subsystems improves by using mixed redundancy strategy and component mixing. In 2019,
Ouyang et al. [10] studied RAP with mixed redundancy strategy and heterogeneous components. The aim
was to maximize system reliability under cost and volume constraints. They proposed an improved particle
swarm optimization algorithm to solve the problem. The study demonstrated that design flexibility provides
higher system reliability and has a substantial impact on the optimal system configuration. In another study,
Peiravi et al. [11] investigated the reliability optimization problem of a series-parallel systems with a novel
redundancy strategy called K-mixed. K-mixed strategy is known as a general form of the mixed strategy in
which the starting point of active components is time zero. The main advantage of the K-mixed strategy over
the previously introduced mixed strategies is its less sensitivity to switch reliability. The problem was
formulated using a mathematical model with two decision variables including the redundancy strategy and
the number of components in each subsystem. Results showed that the K-Mixed strategy delivers higher
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reliability than its mixed complements. In a study conducted by Hadipour at al. [12], redundancy allocation
of series-parallel systems with repairable components was considered under mixed active and warm standby
strategy. The objective functions were maximizing the minimum of mean time to failure of system and
minimizing cost. The problem was formulated using a non-linear integer programming model under a number
of system-level constraints. Meta-heuristic Multi Objective Water Flow Algorithm (MOWZFA) was used to
solve the problem. Although mixed strategy provides higher reliability and lower weight and cost, it requires
longer computation time. In 2020, Peiravi et al. [13] proposed a Continuous Time Markov Chain (CTMC)
model for reliability optimization problems in series—parallel systems with mixed active and cold standby
redundancy strategy. Compared to conventional methods, the proposed model shortened the computation
time and found better solutions with higher reliability values. In a study by Gong et al. [14], redundancy
allocation in k-out-of-n series systems with mixed warm and cold standby components was investigated. The
goal was to maximize system availability and minimize cost. Markov model and simulation studies were
utilized to solve the problem. The results indicated that using warm standby components protects the system
from sudden failure, but increases the system cost. Since mixed warm and cold standby strategy allows for
reducing the risk of system failure with lower costs, it could be considered as a more economically feasible
alternative. In 2021, Sadeghi et al. [15] studied reliability optimization for a series-parallel systems with a choice
of redundancy strategy and the possibility of using heterogeneous components in each subsystem. The
problem was formulated assuming that component time-to-failure follows Erlang distribution. Switch time-
to-failure was also assumed to be exponentially distributed. The obtained differential equations were solved
by using a CTMC model. The introduced equations could efficiently compute the system reliability. In a study
by Chambari et al. [16], RAP in series-parallel systems was formulated using a bi-objective simulation
algorithm for maximizing reliability and minimizing cost. The redundancy strategy could be selected among
active, cold-standby, mixed, or k-mixed strategies. The study exploited NSGA-II to find Pareto fronts. The
results revealed the satisfactory performance of the proposed approach in optimizing system reliability and
cost. Recently, Reihaneh et al. [17] proposed an exact Branch-and-Price (BP) algorithm for the RAP in a
series—parallel system with mixed redundancy strategy and heterogeneous components. The proposed
algorithm could solve the RAP with either active, standby or mixed strategies significantly faster than other
heuristics methods. The calculated reliability of the system with mixed strategy was higher than those obtained
for standby and active strategies.

Table 1. Literature review of RAP in systems with mixed redundancy strategy.

Authors (Year) System System Redundancy Objective Solution
Configuration  Reparability Strategy Function(s) Methods

Ardakan and Series—parallel Non-repairable  Mixed active ~ Maximizing Genetic

Hamadani [5] and cold reliability algorithm
standby

Abouei Series—parallel Non-repairable  Mixed active ~ Maximizing NSGAII

Ardakan et al. and cold reliability and

[6] standby minimizing cost

Abouei Series—parallel Non-repairable  Mixed active ~ Maximizing Genetic

Ardakan et al. and cold reliability algorithm

[7] standby

Aghaci et al. [8]  k-out-of-n series  Non-repairable  Mixed active =~ Maximizing Genetic
and cold reliability algorithm
standby

Gholinezhad Series—parallel Non-repairable  Active, cold- ~ Maximizing Genetic

and Hamadani standby or availability algorithm

]

mixed
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Table 1. Continued.

Authors (Year) System System Redundancy Objective Solution
Configuration  Reparability Strategy Function(s) Methods
Ouyang et al. Series—parallel Non-repairable  Active, cold- ~ Maximizing Stochastic
[10] standby or reliability Perturbation
mixed Particle Swarm
Optimization
(SPPSO)
Peiravi et al. Series—parallel Non-repairable  K-mixed Maximizing Genetic
[11] reliability algorithm
Hadipour etal.  Series—parallel Repairable Mixed active ~ Maximizing the Multi objective
[12] and warm minimum of mean  water flow
standby time to failure of algorithm
system and
minimizing cost
Peiravi et al. Series—parallel Non-repairable ~ Mixed active ~ Maximizing Genetic
[11] and cold reliability algorithm
standby
Gongetal. [14]  k-out-of-n series  Repairable Mixed warm  Maximizing Markov model

and cold availability and and simulation
standby minimizing cost studies
Sadeghi et al. Series—parallel Non-repairable  Active, cold-  Maximizing Solving
[15] standby or reliability differential
mixed equation
obtained by
Continuous-time
Markov chain
Chambari etal.  Series—parallel Non-repairable  Active, cold-  Maximizing NSGAII
[10] standby, reliability and

mixed, or k-

minimizing cost

mixed
Reihaneh et al. Series—parallel Non-repairable  Mixed active ~ Maximizing Branch-and-
[17] and cold reliability price algorithm
standby
This study k-out-of-n series  Repairable Mixed active ~ Maximizing NSGAII

and cold
standby

availability and
minimizing cost

The reviews of the preceding studies show that using mixed redundancy strategies improves the system
performance and provides design flexibility. From the available studies, it seems that little attention has been
paid for solving RAP in k-out-of-n repairable systems with the aim of maximizing the availability. In this
study, for the first time, a bi-objective model is proposed to simultaneously maximize the availability and

minimize the cost of a k-out-of-n system with mixed redundancy strategy.

The outline of the paper is as follows. In Section 2, the problem is described in details along with model
formulation. Section 3 describes the solution methodology used to solve the problem. Computational results
are presented in Section 4. Finally, the conclusion of the study is presented in Section 5.
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2| Problem Description

This atticle addresses RAP in a series—parallel k-out-of-n system with active/cold redundancy strategy. The
system studied in this paper is adapted from the system proposed by Coit and Liu [18]. It consists of S
subsystems, each of which in a k-out-of-n configuration (Fig. 7). The redundant components of each

subsystem are configured in either active or cold standby mode.

i=1 i=2 i=S
m mim . .
— 22— 2 — 2

3 3 3
_“1__/_]]2_ _/_nS_

k=2 k=3 k=3

Fig. 1. System consisted of S subsystems in k-out-of-n configuration.

The proposed approach models the problem using a bi-objective formulation to maximize the availability and
minimize the cost of the system. As mentioned above, unlike reliability, availability is less studied in the
literature. Therefore, finding an exact formula for computing the system availability of a k-out-of-n system is
a challenging issue. The challenge is doubled when mixed redundancy strategy comes into account.

A few studies have formulated availability for systems with standby or active redundant components.
However, these studies have limitations. In 2002, Wang and Loman [19] proposed a formula to compute the
availability in a k-out-of-n system with cold standby components. Although they mentioned that the formula
has been obtained by Markov model, the proof of the formula is not given in their article. In 2017, Carpitella
et al. [3] proposed a general formula to calculate availability of k-out-of-n systems with active redundant
components. To prove the formula, the authors employed Markov chains of a 2-out-of-3 system and
generalized the result to k-out-of-n systems. Here, we have used these formulae and adopted them for the
system under study. The proof of each formula has been presented in Appendix 1 and Appendix 2.

2.1| Assumptions

The following assumptions have been considered regarding the active subsystems:

— The subsystems are in k-out-of-n configuration, meaning that at least k components (k<n) have to operate
concurrently to assure that the subsystem is in the functioning state. Therefore, if (n - k + 1) components fail the
subsystem fails and therefore cause the whole system fail.

— All of the components are independent, identical, and repairable.

—  The failure rate (A) and repair rate (u) of the components are exponentially distributed.

—  No constraints are considered for the availability of maintenance crews.
The assumptions for cold subsystems are as follows:

—  The subsystems are implemented in an (N-1)-out-of-N:G configuration, meaning that each subsystem functions if at
least (N-1) components function. Since an exact formula is not available for the availability of k-out-of-n systems with
cold standby subsystems, this special configuration is considered.

— Although (N-1) components are enough to cover the load, one extra active component is added to decrease the failure

rate of the subsystem.
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— Another component is also added in cold standby. Adding the cold standby component is necessary to keep the system
in functioning state all the time. The cold standby component will replace any failed component.

—  The failed component will be used as the standby component after being repaired.

—  The components are independent and identical.

— The failure rate (A) and repair rate (1) of the components follow an exponential distribution.

—  No load sharing is performed, meaning that changing the load level does not change the failure rate of the components.

—  Switch is assumed to be perfect.

—  No failure would occur during the time needed to activate the cold standby component.

2.2 | Model Formulation

The studying system is subject to weight constraint and the objective is to maximize system’s availability,
while minimizing the overall cost. Since the subsystems are interconnected in seties, the system’s cost is
obtained from the sum of the active subsystems’ cost (CA) and standby subsystems’ cost (CS) (i.e. C = CA +
CS). The system’s availability is calculated by multiplying the subsystems’ availabilities (A = AS X AA). The
parameters used in the model are presented in Table 1.

2.2.1| Parameters
P: reliability of switch.
: time needed to activate the standby component.

A, : failure rate of the active component in standby subsystems.
]

X, : failure rate of the cold standby component in standby subsystems.
]

W: maximum allowable system weight.

nmax,j: maximum number of components of each subsystem.

qj,aj,bj,rj: coefficients of the cost function.

2.2.2 | Decision variables

nj: number of components in subsystem j.

Type: redundancy strategy (in mixed active/cold configuration).
2.2.3 | Cost functions

The cost functions of the subsystems are adapted from the model proposed by Elegbede and Adjallah [20].
In their approach the cost of the subsystems includes failure and repair rates of the components. Thus, the
technical performance of the system is taken into account while estimating the cost. For active subsystems
the cost function is formulated according to Eq. (7).

Ca=2n, (ajx} +bjuj! )’ @

jeA

where aj, bj, qj, and 1j are real numbers such that: aj, bj, gj > 0 and rj < 0. These coefficients could be obtained
from the maintenance databases of organizations.

We have modified Eg. (7) to obtain the cost function of cold standby subsystems according to Egq. (2).
Cs :Z(njajxr;j +(n;+1) by +ah ) @
jeS

Using Eg. (1) and Egq. (2), the cost of the system can be expressed according to Eg. (3).
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C(n) =Y (na, +(n;+1)by +any )+ 0 (a 2] +bpu) ©)

jeS jeA

2.2.4| Availability functions

To calculate the availability of the k-out-of-n active subsystems, the exact formula proposed by Carpitella et
al. [3] is used as presented in Egq. (4) (see Appendix 1 for the proof).

iy

ik \ |
Sl N - N (k1) (n-ke1)
ixn —i + k-1 Xn—k+1
T

For cold standby subsystems, availability is obtained for (n-1)-out-of-n configuration by adopting the formula
suggested by Wang and Loman [19] according to Eq. (5) (see Appendix 2 for the proof).

A [1—[nj(nj—1)x§l(uj+njxa‘ +hy —Puj)ﬂ
S [ankajuf Jrnj(4r1J —l)kzajuj +n12(nj 71)}»3% +3n1(kajkbjuj *}ua‘HJZP)‘FHJ (nJ —1)()»;7%J —szaluj)+6pf(kbl +njkajpjt+uj)]

“)

®)
With respect to Eg. (4) and Eq. (5), the availability of the studying system is given by Eg. (6).

AN =TT [1’[”1(“1*1)X§J(u,+n,—xaj 1, 7P“J)ﬂ

jES[anha‘pf +nj(4nj —l)}fa‘pj +nj2 (nj —1)7»33] +3n; (ka‘kbluj —ka]usz)+nj (nj —1)(?»;?»,)J —P)»;uj)+6pjz (}»bJ +r1jka‘p.jr+pi)}
. , (©6)
s

x H n =

. A ) (k) |
JeA -‘Ju'ﬁ»ﬂ‘ ”[k,’_lju(f' e
J

2.2.5| The proposed mathematical model

I
Y
]

The aim of this study is to determine the maximum availability and minimum cost of a k-out-of-n system
subject to a constraint on weight of the system. The model is formulated according to Mode/ (7).

max A(n),

min C(n),
Z nw, <W,
jeA,S

jeAn ek K +1K +200n ),

]

jeS:nje{kj+1,kj+2}.

The latter two constraints determine the number of components (nj) in active and cold-standby subsystems.
As for active subsystems, the configuration is k-out-of-n, therefore kj<nj. nmax,j is the upper bound for nj
and is usually selected based on practical restrictions. On the other hand, the configuration of cold-standby
subsystems, is (N-1)-out-of-N:G, which is possible only if nj=kj+1 or nj=kj+2.

3| Solution Methodology

The methodology to solve the multi-objective optimization problem of this study includes two steps:
Finding non-dominated solutions using NSGAII and selecting the best solution.
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I. Finding non-dominated solutions

The first step to solve the problem is to find the non-dominated solutions. For this purpose, a NSGA-II is
used. Formulated by Deb et al. [21], NSGA-II is a metaheuristic algorithm that
follows a parallel search strategy to find the optimal solutions. It uses an elitist approach and specific
adaptation assignment rules to determine the rank and the distance of each solution from the others. NSGA-
II could provide solutions for any number of objectives with any number of constraints. The best solutions
found in each iteration are saved into a Pareto set. The Pareto set of optimal solutions found by NSGA-II is
preferable instead of a single solution because it offers more choices to decision-makers. Moreover, NSGA-
II preserves the diversity of the solutions using a sharing method to explore different areas of the Pareto
front. This prevents stopping at local optimal points and limiting to certain areas of the solution space [22].

The consecutive steps of NSGA-II are as follows:

Step 1. Chromosome definition.

Step 2. Setting the fitness function.

Step 3. Setting the crossover and mutation mechanisms.

Step 4. Setting the algorithm termination condition.

Step 5. Generating the initial population.

Step 6. Creation of the offspring population based on the crossover and mutation mechanisms.

Step 7. Selection of the chromosomes with the largest fitness function as the parents of the next generation.

Step 8. Obtaining the non-dominated Pareto fronts by combining the newly generated population with the
previous one and sorting the solutions.

Step 9. Repeating S7ps 6-8 until the termination condition is met [22].

NSGA-II has been extensively used for solving multi-objective problems, including the redundancy-
allocation problem [23].

II. Selection of the best solution

Pareto front provides a complete representation of the optimal solution space. Based on the decision criteria,

decision makers can choose the most suitable solution among the non-dominated set of solutions. In this
study, the best solution is selected by TOPSIS1, which is a multi-criteria decision making method. TOPSIS

presents an ordered ranking of the solutions by calculating the distance of each solution from the positive
ideal and the negative ideal solutions.

The methodology to find the best solution for RAP in k-out-of-n systems has been described clearly by
Carpitella et al. [3]. The steps for selecting the best solution from Pareto front using TOPSIS are as follows:

1. Evaluation of solutions: each solution is given a score. The score of the solution i for the objective function
j is shown by gj. Here, j could be availability or cost.

II. Determining the evaluation criteria and weighting them.

III. Calculating the normalized and the weighted decision matrix using the following equation:
Ujj = W,.Zy, for alli, for allj,

where wj is the weight of the criterion j, and zij is the score of the solution i under the criterion j. zij is
normalized using the following equation:

! Technique for order preference by similarity to ideal solutions
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Zi = i, for alli, for allj.

ij
n 2
/ i=18ij

IV. Determining the positive (A*) and the negative ideal point (A-) using the following equations:

AZUS, e UL = oo,

where I'and I" are the sets of critetia that must be maximized and minimized, respectively.

V. Calculating the distance of each solution i from A* and A- using the following equations.

S = /Z{(:l(Uij - Uj.
- _ k -
Si = /Z-:1(Uij Uj.

VI. Evaluation of each solution i based on its proximity to A* using the closeness coefficient Ci*

S’

C.*:—'
YOSy + St

0 < Cf < 1foralli.

VII. Ranking the Pareto solutions based on closeness coefficients. For two generic solutions i and z, if Ci* = Cz*,

solution i is preferred over solution z.
4| Computational Results

The main purpose of this research is to find the optimal configuration in k-out-of-n systems with active/cold
standby redundancy strategy. To investigate the performance of the proposed method, a system composed
of 14 subsystems are considered. Each subsystem (j) is characterized by the minimum number of components
required to keep the subsystem in the functioning state (kj), the failure rate (Aj), the repair rate (yj), the
allowable weight of the components (wj), and the type of the redundancy strategy in each subsystem (active
or standby) which are summarized in Table 1. Each subsystem can be of active (A) or standby (S) strategy. kj
is selected from {1, 2, 3} for each subsystem.

Table 1. Subsystems’ data [18].

j k; Strategy A i wj
1 2 A 0.00532  0.43244 3
2 3 S 0.00818  0.3454 8
3 3 A 0.0133 0.29342 7
4 2 S 0.00741 0.26886 5
5 1 A 0.00619  0.24052 4
6 3 S 0.00436  0.23914 5
7 3 S 0.0105 0.23768 7
8 3 S 0.015 0.23248 4
9 2 S 0.00268  0.20888 8
10 3 S 0.0141 0.19466 6
11 2 S 0.00394  0.19064 5
12 1 S 0.00236  0.1869 4
13 2 A 0.00215  0.06964 5
14 3 S 0.011 0.04167 6

The values of the parameters used in the proposed model are presented in Table 2. The maximum number of
components of each subsystem (nmax,j) is set to six. The objective is to maximize system availability and

minimize system cost given constraint on system weight (W = 170).
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Table 2. Parameters used in the model [19], [20].

Parameters and Their Value

P=0.95
1=10min = 0.16hr
7\a,

Ao A
xb:_lz_l
10 10

r,=-08x(04,0210812,09,14,11051307,06,0.103)
0, =0.85x(04,02,1,0812,0.9,1.4,11,0513,07,0.6,010.3)
a,=0.01x(14,3,2,5,7,8,610,9,131112,14)

b, =0.1x(0.4,02,,08,12,09,14,1.1,051.3,07,06,0.1,03)
W =170

Nimax,j =06

To solve the proposed model, NSGA-II is coded in the MATLAB®. The program was tun on an Intel Core
i5-480M @ 2.67GHz CPU with 4 GB of RAM. Briefly, each solution was encoded usinga 3 X 14
chromosome (Fig. 2). The first and the second rows of the solution represent the subsystems’ number and
the relevant redundancy strategies, respectively. The third row represents the number of the allocated
components for each subsystem.

Subsystem

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Redundancy strategy A S A S A S S S S S S S A S
4 3 3 3 4 4 4 3 4 3 2 5 4

Number of component 3

Fig. 2. Encoding solution as a chromosome representation.

The initial population was randomly generated from a population size of N = 100. Parent chromosomes were
selected randomly from the initial population. To generate offsprings, the max-min crossover operator was
implemented with crossover rate of 0.9. The crossover operator uses a binary 3 X 14 random matrix to
exchange the respective values between parents (Fig. 3).

I 2 3 4 5 6 7 8 9 1011 1213 14

1 2 3 4 5 6 7 8 9 1011 1213 14 A S ASASSSSSSSAS 1 2 3 4 5 6 7 8 9 10 11 12 13 14

A S A S S S S S S S S AS 101 1 00 1 1 1 1 01 10 A S s s S S S S A
Parent 1: .

4 4 15 33 4 4 4 34 3 24 4 3 4 4 3 3 4 4 4 3 4 3 2 3 4

1 2 3 45 6 7 8 9 1011 1213 14

1 2 3 4 5 6 7 8 9 1011 1213 14 ASASASSSSSS S5 AS 12 3 4 5 6 7 8 9 1011 1213 14

A S A S A S S S S SSSAS 1 0 001 00 00000 01 A S A S S S §$ § S A S
Parent2: | 5 4 4 3 3 4 4 4 3 4 3 2 3 4 4 4 4 3 3 4 4 4 3 4 3 2 3 4

Fig. 3. Example of crossover operator.

To diversify the new population, the values within each solution matrix were changed randomly using a
mutation operator. The mutation rate (pm) is calculated as > where d is the number of decision variables [21].

Since d = 28, pm was set to 0.036. An example of a mutation operator is shown in Fig. 4.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14
A S A S A S S S S S S S A S
2 4 3 3 3 4 4 4 3 4 3 2 3 4
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Fig. 4. Example of mutation operator.

The maximum iterations of 100 is determined as the stopping condition to terminate NSGA-II. The
parameters used for the NSGA-II procedure are summarized in Table 3.

Table 3. Parameters used for NSGA-II.

Parameters Values

Initial population size 100

Crossover rate 0.9

Mutation rate 0.07, for active and cold standby strategies

0.036, for mixed strategy
Number of iterations 100

To validate the performance of the proposed method for systems with mixed active/standby redundancy
strategies, the results are compared with the results of applying the proposed method to systems with active
strategy and also systems with, standby strategy. After obtaining the Pareto set of solutions, TOPSIS decision
making method is employed to rank and prioritize the non-dominated solutions, based on their distances
from the best and the worst solutions. Each solution is assigned a score which indicates the ranking index of

the solution. The results are shown in Tables 4-6 respectively for active, standby and active/standby strategies.
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The solutions with highest scores for systems with active, cold standby, and mixed redundancy strategies are
showed in Fig. 5 and Table 7. The results indicate that using the active redundancy strategy leads to low levels
of availability. In other words, constrained cost and weight do not allow to achieve high availability with active
configuration. In contrast, both cold-standby and mixed redundancy strategies provide more than 0.999
availability. The total cost of the system with cold and mixed configuration is 279.15101 and 279.5973000,
respectively. The data demonstrate that both strategies perform well in providing maximum availability and
minimum cost. Moreover, despite the use of active components, the system cost with mixed strategy remains

within the range of the cost of system with cold standby strategy.

| Redundancy strategy: Cold standby | System avaifability = 0.9998585 | System cost = 279.15101 I

| Redundancy strategy: Mived ] System availability = 09992919 | System cost = 2795973006 |

Fig. 5. Solutions with highest scores for systems with Active, Cold standby, and Mixed
redundancy strategies.
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Table 7. Comparison of the solutions with highest scores for systems with
active, cold standby, and mixed redundancy strategies.

Active Cold Standby  Mixed
i n; n; n; Type
1 5 4 4 A
2 4 4 4 S
3 4 4 5 A
4 3 3 3 S
5 3 2 4 A
6 4 4 4 S
7 4 4 4 S
8 4 4 4 S
9 3 3 3 S
10 4 4 4 S
11 3 3 3 S
12 2 2 2 S
13 4 3 4 A
14 4 4 4 S
Availability 0.003507032 0.9998585 0.9992919
Cost 363.7020475 279.15101 279.5973006

5| Conclusion

The present study provided an approach to find the optimal configuration in k-out-of-n repairable systems
with active and cold redundancy strategies. The purpose of this study was to maximize system availability
while minimizing system cost. Using Markov chains, an exact formula was proposed to calculate the
availability of systems with active and cold standby subsystems. An adapted formula was also proposed to
calculate system cost. NSGA-II was used to deal with the proposed bi-objective model. To choose the most
suitable solution, the obtained Pareto solutions, which met both objectives, were ranked by TOPSIS method.
To validate the petrformance of the proposed method for systems with mixed active/standby redundancy
strategies, the results are compared with the results of applying the proposed method to systems with active
strategy and also systems with cold standby strategy. The results show that both cold standby and mixed
redundancy strategies provide high levels of availability with minimum cost.

The following aspects are suggested for future studies:
I. Investigating the proposed method for multi-state systems.
II. Consideration of uncertainties in model parameters.
III. Selection of maintenance strategies considering the system's repatability.

IV. Implementation of hybrid meta-heuristic algorithms to solve the proposed problem.
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Supplementary Material
Appendix 1

Availability formula in in k-out-of-n systems with active components

Few studies have offered general formula to calculate availability. Carpitella et al. [3] have proposed the
following formula to calculate availability of k-out-of-n systems with active redundant components.

e

ik \ |
Sl N - M (k1) (n-ke1)
i;bn —i + k-1 )\ln—k+l
e "

As the article shows, Markov chains have been used to obtain the formula for a 2-out-of-3 system. Then, the

formula has been generalized to k-out-of-n systems. Here, we have proved the formula for an (n-1)-out-of-n

system:

Proof: consider the following Markov graph (Fig. A7) of an (n-1)-out-of-n system. 0 and 1 represent the

functioning states, and 2 is the failure state. In 0, all the n components are available.

S S; S;
2AAt (n-1)AAt
0 il o‘ 2yt o

Fig. Al. Markov graph of an (n-1)-out-of-n system.

The possible transitions of the system between the states are summarized in Table AT. After At, the system

will be in Sp state if one of the following scenarios occurs:
I. It has previously been in SO and has remained in this state.
II. It has moved from S1 to SO.

Table Al. Transition matrix of an (n-1)-out-of-n system.

Future States

So S1 SZ

Present Sp 1-nAAt nAAt 0
States  S; At 1 —pAt-(n-1)AAt  (n-1)AAt
S2 0 2uAt 1 — 2pAt

According to the transition matrix:
Po(t+ At) = (1 —nAAt) Po(t) + pAtP1(t).

It is clear that the time derivative of the probability of the system being in SO is equal to the probability of
entering SO minus the probability of exiting it:

dpst(t) = —nAPy(t) + pPy (D). (S1-1)

Similarly, based on the transition matrix:
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P, (t + At) = nAAt Py(t) + (1 — pAt — (n — 1)AAL) P (t) + 2uAt P,y (L).

Therefore, for S1:

T — Ry — P () — (0~ AP (O + 20 (0. (s1-2)
Also, for S2:

P,(t+ At) = (n — DAAt P (t) + (1 — 2pAt) Py ().
and

dP, (t)
dt

The time-dependent availability can be calculated by solving the above differential equations (S1-1, S1-2, and

= (n = DAP (D) — 2pP, (D). (81-3)

S1-3). The stationary availability is calculated over long enough periods of time (t—0). In this case, since the
probability of the subsystem being in any of the possible states, Pi (t), takes a constant value, therefore:

dh(t) 0
o dt (S1-1)

As a result, the above-mentioned probabilities will be time-independent functions, and:

lim <2 = —nAPy (00 + pPy(0) =0, (S1-4)
tim PO 1Ry (en) — Py () — (n — DA () + 2Py (o) = 0. (S1:5)
lim d";t“) = (n — 1)AP,(c0) — 2P, (o) = 0. (S1-6)

The total probability of the system in different possible states is equal to one:

PO + P1 + P2 = 1. (81-7)
Equation (S1-4) suggests that:
NA

Pl = TPO (81'8)

From equations (S1-6) and (S1-6) we conclude:

_ N(N-D»?

2 212 0 (§1-9)
By placing (S1-8) and (S1-9) in (S1-7), the following equation is obtained:
. +pr +N(N—1)x2 —

oo 212 o= 1
As the result;

2 2
P, = ! . (S1-10)
2p2 4+ 2uNA + N(N — 1)A?
Similatly, the following is obtained:
2uUNA
(S1-11)

P, = :
17 242 4 2uNA + N(N — 1)A2
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Since the subsystem is only available in PO and P1, therefore:
As=Po + P, (S1-12)
By placing (S1-10) and (S1-11) in (S1-12), the stationary availability of the subsystem is obtained as follows:

Ao = 2u? + 2uNa
ST 212 + 2uNA 4+ N(N — 1A%’

(S1-13)

The obtained formula can be generalized to obtain stationary availability in active redundancy subsystems
with k-out-of-n configuration. The equation is as follows:

e

A _ i=k
A ZN: n A n METLE
i=k | k —1

Appendix 2. Availability formula in in k-out-of-n systems with cold standby components

(S1-14)

To the best of our knowledge, no precise formula has been proposed to calculate the availability of k-out-of-
n systems with cold standby components. In a study by Wang and Loman [19] a formula has been proposed
to obtain the availability of (n-1)-out-of-n:G systems with cold redundant components. Although the authors
have mentioned that the formula is obtained by solving the Markov model, but they have not proved the
formula. We prove the formula by using the Markov chain and the transition matrix.

Proof: consider the following Markov graph (I7g. A2) of an (n-1)-out-of-n:G system. 0-3 represent the
functioning states, and 4 is the failure state.

SO SI
nA,At

(n'l) Aa

2u 3u
S 2 S 3 S 4

Fig. A2. Markov graph of an (n-1)-out-of-n:G system.

Table A2 shows the transitions of the system between the states.
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Table A2. Transition matrix of an (n-1)-out-of-n:G system.

Future States

So Sy S, S3 S4
Present states So  1-nAAt-MAt  nhAt MAE 0 0
Si 0 1 —EAt—ﬂAt EAt LPA,E 0
T T T T
S, pAt 0 1 —pAt-ni, At nhAt 0
S; 0 0 2uAt 1-(n-DAAL -2uAt  (n-1)AAL
Sy 0 0 0 3uAt 1-3uAt

According to the transition matrix:

P,(t+At) = (1-nA At-A At) P (1) + pAt P (1),

Py(t + At) — Py(t (52_1)
lim o A)t 0® _ —nA,Py(t) — A, Py (1) + pAt P, (0.

P (t+ At) = nA,At Py(t) + (1 — gAt- 1;—PAt) P, (D),

Ay "“%1‘”” = nA,Py(t) — %Pl (v). (S2-2)
Pyt At) = ApAtPo(8) + 7 APy (1) + (1-pALNAAD Py (1) + ZuAt Py (0)

A m%i'w = ApPo(t) + E P, (1) - tP, (t) - nA,P, () + 21P5 (D), (S2-3)
Polt+41) = 1:_1) At Py (t) + nd At Py (1) + (1-(n-1)AaAt-21At) P (t) + 3pAt Py (1),

Jim 222220 = 2P () + A, P,(0) — (0 — DAuP (D) — 2uP3 (D) + 3Py (0. (S2-4)
Py(t+A0) = (n — DALAL P3() + (1-3pA0) Py(0),

o P (t+A40) —P(1) _ (1 — DB — 3uPs (0. (2-5)

At-0 At

The time-dependent availability of the subsystem can be obtained by solving the Egs. (§2-7)-(52-5). However,
the stationary availability is calculated when t—00. In this case, the probability of the system being in any of
the possible states (P;) takes on a fixed value, therefore:

lim &0 — o,

tooo dt

As a result, Pi(t) functions will be time-independent and Eg. (§2-7) will be as follows:

—N2A,Py(t) — ApPy(t) + pAt P, (t) = 0.

Therefore,

_ NA, + 2
m

In a similar way, it follows from Eg. (§2-2):

Po. (S1-6)

2
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P1 = N}\ano. (81-7)
It also follows from Eg. (§2-3):

N2A2 + uNA, + + NA A — —PN
P3 — a IJ‘ a I’l}\b lez a’‘\b I’l}\b P)‘a PO, (81'8)

Similatly, it results from Eg. (§2-4):

. (N — DAy (N?AZ + uNA, + pdp + NAaAy — pdp, — PNpR,)

s o Pp. (S1-9)

The total probability of the possible states is equal to one:

Po+ P1+ Py + P+ Py=1.

By placing Egs. (§2-6)-(§2-9) in the latter Equation, the following relation is obtained:

618 + 68PNALT + 64° (N, + &) + 3U(N?AS + N, + ks + NAAy — 1y — PNiA,) + (N — 1) (uNA, + by + N33 + NI, — iy —PNIL) |,
y = 1.

o
Which results in:
P, =

6 (S1-10)
61 + 6INALT + 6R2(NA, + Ay) + 3H(NZAZ + pUNA, + NAA, — PNJA,) + (N — DA, (UNA, + NZAZ + NAA, — PNA,)
In the system of the study, availability is obtained as follows:
As=Po+ P1+ P2+ P3,
By placing Eq. (§2-10) in Egs. (§2-6)-(§2-9) and rewriting the latter equation, we conclude:
As =

(S1-11)

613 + 6p3NA,T + 6u2(NA, + Ay) + 3u(N2A2 + uNA, + NA A, — PNua,)
6p3 + (N — 1)N2A3 + N(N — 1)A2A, — (N — 1)NPpAZ + 4N2A2p — NAZp + 6p3NA, T 4+ INP2A, + 6p2A, + 3NpA A, — 3u2NA,P°




