Forecasting Solar Radiation in Diverse Climates in Iran Utilizing Deep Learning Methods

Authors

  • Fatemeh Karimidehkordi * Technical & Engineering Faculty, Alzahra University, Tehran, Iran.
  • Reza Samizadeh Technical & Engineering Faculty, Alzahra University, Tehran, Iran.

https://doi.org/10.22105/raise.vi.67

Abstract

Fossil fuel consumption not only leads to climate change and global warming but also destroys the environment with causing drought, heavy rains, and storms, created by increasing emissions of greenhouse gases. Hence, producing energy from renewable resources is more necessary than ever. Although Iran has a high potential for producing energy from renewable sources, the share of these energies in electricity production is only 1.1 percent. Therefore, solar energy can be utilized with a practical strategy as an alternative source for transitioning from fossil fuels and achieving sustainable energy production. This study analyzes deep learning models for predicting solar radiation under different meteorological conditions in Iran, emphasizing the necessity for accurate renewable energy forecasts due to rising fossil fuel use and environmental concerns.  This research evaluates the performance of Convolutional Neural Networks (CNN), Long Short-Term Memory networks (LSTM), and hybrid models with real solar radiation data. The data reveal that the CNN-GRU model attained a substantial R² value of 0.895, while the CNN-LSTM model exhibited the highest prediction accuracy with the lowest RMSE. These findings emphasize the tremendous potential of hybrid architectures to improve solar energy forecasting, thereby easing Iran's transition to renewable energy.  Moreover, identified research gaps underscore the imperative of amalgamating various climatic data sources, including satellite imagery and localized meteorological observations. Future research should concentrate on improving forecasting methods by investigating hybrid modelling methodologies and integrating machine learning algorithms to augment predictive precision in solar radiation forecasting.

Keywords:

Solar radiation forecasting, deep learning, Convolutional Neural Networks , Long Short-Term Memory , hybrid models, renewable energy, climate variations

References

  1. [1] Mohammadi, K., Mostafaeipour, A., & Sabzpooshani, M. (2014). Assessment of solar and wind energy potentials for three free economic and industrial zones of Iran. Energy, 67, 117–128. https://doi.org/10.1016/j.energy.2014.02.024

  2. [2] Reikard, G. (2020). Forecasting long-term solar activity with time series models: Some cautionary findings. Journal of atmospheric and solar-terrestrial physics, 211, 105465. https://doi.org/10.1016/j.jastp.2020.105465

  3. [3] Petrakou, E. (2018). A deterministic model for forecasting long-term solar activity. Journal of atmospheric and solar-terrestrial physics, 175, 18–23. https://doi.org/10.1016/j.jastp.2018.04.009

  4. [4] Ahmad, T., Zhang, D., & Huang, C. (2021). Methodological framework for short-and medium-term energy, solar and wind power forecasting with stochastic-based machine learning approach to monetary and energy policy applications. Energy, 231, 120911. https://doi.org/10.1016/j.energy.2021.120911

  5. [5] Hong-bo, W., Jian-ning, X., & Chang-yin, Z. (2015). The mid-term forecast method of solar radiation index. Chinese astronomy and astrophysics, 39(2), 198–211. https://doi.org/10.1016/j.chinastron.2015.04.010

  6. [6] Alonso-Suárez, R., David, M., Branco, V., & Lauret, P. (2020). Intra-day solar probabilistic forecasts including local short-term variability and satellite information. Renewable energy, 158, 554–573. https://doi.org/10.1016/j.renene.2020.05.046

  7. [7] Reikard, G., Robertson, B., & Bidlot, J.-R. (2015). Combining wave energy with wind and solar: Short-term forecasting. Renewable energy, 81, 442–456. https://doi.org/10.1016/j.renene.2015.03.032

  8. [8] Rafati, A., Joorabian, M., Mashhour, E., & Shaker, H. R. (2021). High dimensional very short-term solar power forecasting based on a data-driven heuristic method. Energy, 219, 119647. https://doi.org/10.1016/j.energy.2020.119647

  9. [9] Breinl, K., Turkington, T., & Stowasser, M. (2015). Simulating daily precipitation and temperature: a weather generation framework for assessing hydrometeorological hazards. Meteorological applications, 22(3), 334–347. https://doi.org/10.1002/met.1459

  10. [10] Jang, H. S., Bae, K. Y., Park, H.-S., & Sung, D. K. (2016). Solar power prediction based on satellite images and support vector machine. IEEE transactions on sustainable energy, 7(3), 1255–1263. https://doi.org/10.1109/TSTE.2016.2535466

  11. [11] Raza, M. Q., Nadarajah, M., & Ekanayake, C. (2016). On recent advances in PV output power forecast. Solar energy, 136, 125–144. https://doi.org/10.1016/j.solener.2016.06.073

  12. [12] Yadav, P., Tripathi, B., Lokhande, M., & Kumar, M. (2013). Estimation of steady state and dynamic parameters of low concentration photovoltaic system. Solar energy materials and solar cells, 112, 65–72. https://doi.org/10.1016/j.solmat.2013.01.012

  13. [13] Galván, I. M., Valls, J. M., Cervantes, A., & Aler, R. (2017). Multi-objective evolutionary optimization of prediction intervals for solar energy forecasting with neural networks. Information sciences, 418, 363–382. https://doi.org/10.1016/j.ins.2017.08.039

  14. [14] Hiyama, T. (1997). Neural network based estimation of maximum power generation from PV module using environmental information-Discussion. IEEE Transactions On Energy Conversion. https://doi.org/10.1109/60.629709

  15. [15] Bahgat, A. B. G., Helwa, N. H., Ahmad, G. E., & El Shenawy, E. T. (2005). Maximum power point traking controller for PV systems using neural networks. Renewable energy, 30(8), 1257–1268. https://doi.org/10.1016/j.renene.2004.09.011

  16. [16] Rus-Casas, C., Aguilar, J. D., Rodrigo, P., Almonacid, F., & Pérez-Higueras, P. J. (2014). Classification of methods for annual energy harvesting calculations of photovoltaic generators. Energy conversion and management, 78, 527–536. https://doi.org/10.1016/j.enconman.2013.11.006

  17. [17] Júnior, S. E. R., & de Oliveira Serra, G. L. (2017). A novel intelligent approach for state space evolving forecasting of seasonal time series. Engineering applications of artificial intelligence, 64, 272–285. https://doi.org/10.1016/j.engappai.2017.06.016

  18. [18] Almonacid, F., Pérez-Higueras, P. J., Fernández, E. F., & Hontoria, L. (2014). A methodology based on dynamic artificial neural network for short-term forecasting of the power output of a PV generator. Energy conversion and management, 85, 389–398. https://doi.org/10.1016/j.enconman.2014.05.090

  19. [19] Cao, J., & Lin, X. (2008). Application of the diagonal recurrent wavelet neural network to solar irradiation forecast assisted with fuzzy technique. Engineering applications of artificial intelligence, 21(8), 1255–1263. https://doi.org/10.1016/j.engappai.2008.02.003

  20. [20] Kazem, H. A., Yousif, J. H., & Chaichan, M. T. (2016). Modeling of daily solar energy system prediction using support vector machine for Oman. International journal of applied engineering research, 11(20), 10166–10172. https://www.uotechnology.edu.iq/paper/PDF/power/No. 39.pdf

  21. [21] Marzouq, M., El Fadili, H., Zenkouar, K., Lakhliai, Z., & Amouzg, M. (2020). Short term solar irradiance forecasting via a novel evolutionary multi-model framework and performance assessment for sites with no solar irradiance data. Renewable energy, 157, 214–231. https://doi.org/10.1016/j.renene.2020.04.133

  22. [22] Veldhuis, A. J., Nobre, A. M., Peters, I. M., Reindl, T., Ruether, R., & Reinders, A. H. M. E. (2015). An empirical model for rack-mounted PV module temperatures for Southeast Asian locations evaluated for minute time scales. IEEE journal of photovoltaics, 5(3), 774–782. https://doi.org/10.1109/JPHOTOV.2015.2405762

  23. [23] Yadav, A. K., Malik, H., & Chandel, S. S. (2015). Application of rapid miner in ANN based prediction of solar radiation for assessment of solar energy resource potential of 76 sites in Northwestern India. Renewable and sustainable energy reviews, 52, 1093–1106. https://doi.org/10.1016/j.rser.2015.07.156

  24. [24] Sun, Y., Venugopal, V., & Brandt, A. R. (2019). Short-term solar power forecast with deep learning: Exploring optimal input and output configuration. Solar energy, 188, 730–741. https://doi.org/10.1016/j.solener.2019.06.041

  25. [25] Wang, F., Xuan, Z., Zhen, Z., Li, K., Wang, T., & Shi, M. (2020). A day-ahead PV power forecasting method based on LSTM-RNN model and time correlation modification under partial daily pattern prediction framework. Energy conversion and management, 212, 112766. https://doi.org/10.1016/j.enconman.2020.112766

  26. [26] Gala, Y., Fernández, Á., Díaz, J., & Dorronsoro, J. R. (2016). Hybrid machine learning forecasting of solar radiation values. Neurocomputing, 176, 48-59. https://doi.org/10.1016/j.neucom.2015.02.078

  27. [27] Voyant, C., Notton, G., Kalogirou, S., Nivet, M.-L., Paoli, C., Motte, F., & Fouilloy, A. (2017). Machine learning methods for solar radiation forecasting: A review. Renewable energy, 105, 569–582. https://doi.org/10.1016/j.renene.2016.12.095

  28. [28] Wang, H., Yi, H., Peng, J., Wang, G., Liu, Y., Jiang, H., & Liu, W. (2017). Deterministic and probabilistic forecasting of photovoltaic power based on deep convolutional neural network. Energy conversion and management, 153, 409–422. https://doi.org/10.1016/j.enconman.2017.10.008

  29. [29] Sun, M., Feng, C., & Zhang, J. (2020). Probabilistic solar power forecasting based on weather scenario generation. Applied energy, 266, 114823. https://doi.org/10.1016/j.apenergy.2020.114823

  30. [30] Yang, H.T., Huang, C.M., Huang, Y.C., & Pai, Y.-S. (2014). A weather-based hybrid method for 1-day ahead hourly forecasting of PV power output. IEEE transactions on sustainable energy, 5(3), 917–926. https://doi.org/10.1109/TSTE.2014.2313600

  31. [31] Shi, J., Lee, W.-J., Liu, Y., Yang, Y., & Wang, P. (2012). Forecasting power output of photovoltaic systems based on weather classification and support vector machines. IEEE transactions on industry applications, 48(3), 1064–1069. https://doi.org/10.1109/TIA.2012.2190816

  32. [32] Mishra, M., Dash, P. B., Nayak, J., Naik, B., & Swain, S. K. (2020). Deep learning and wavelet transform integrated approach for short-term solar PV power prediction. Measurement, 166, 108250. https://doi.org/10.1016/j.measurement.2020.108250

  33. [33] Zhao, Y., Lehman, B., Ball, R., Mosesian, J., & de Palma, J. F. (2013, March). Outlier detection rules for fault detection in solar photovoltaic arrays. In 2013 twenty-eighth annual IEEE applied power electronics conference and exposition (APEC) (pp. 2913-2920). IEEE. https://doi.org/10.1109/APEC.2013.6520712

  34. [34] Jalali, S. M. J., Ahmadian, S., Kavousi-Fard, A., Khosravi, A., & Nahavandi, S. (2021). Automated deep CNN-LSTM architecture design for solar irradiance forecasting. IEEE transactions on systems, man, and cybernetics: systems, 52(1), 54–65. https://doi.org/10.1109/TSMC.2021.3093519

  35. [35] Kumari, P., & Toshniwal, D. (2021). Long short term memory--convolutional neural network based deep hybrid approach for solar irradiance forecasting. Applied energy, 295, 117061. https://doi.org/10.1016/j.apenergy.2021.117061

  36. [36] Gür, Y. E. (2024). Comparative analysis of deep learning models for silver price prediction: CNN, LSTM, GRU and hybrid approach. Akdeniz İİBF Dergisi, 24(1), 1-13. https://doi.org/10.25294/auiibfd.1404173

  37. [37] Ullah, S., Ullah, N., Siddique, M. F., Ahmad, Z., & Kim, J. M. (2024). Spatio-temporal feature extraction for pipeline leak detection in smart cities using acoustic emission signals: a one-dimensional hybrid convolutional neural network--long short-term Memory approach. Applied sciences, 14(22), 10339. https://doi.org/10.3390/app142210339

  38. [38] Bai, X., Zhang, N., Cao, X., & Chen, W. (2024). Prediction of PM2. 5 concentration based on a CNN-LSTM neural network algorithm. PeerJ, 12, e17811. https://doi.org/10.7717/peerj.17811

  39. [39] Saleem, F., Ahmad, Z., Siddique, M. F., Umar, M., & Kim, J.-M. (2025). Acoustic Emission-Based pipeline leak detection and size identification using a customized One-Dimensional densenet. Sensors, 25(4), 1112. https://doi.org/10.3390/s25041112

  40. [40] Sabri, M., & El Hassouni, M. (2022). A novel deep learning approach for short term photovoltaic power forecasting based on GRU-CNN model. In E3S Web of Conferences (Vol. 336, p. 00064). EDP Sciences. https://doi.org/10.1051/e3sconf/202233600064

  41. [41] Obiora, C. N., Hasan, A. N., Ali, A., & Alajarmeh, N. (2021). Forecasting hourly solar radiation using artificial intelligence techniques. IEEE canadian journal of electrical and computer engineering, 44(4), 497–508. https://doi.org/10.1109/ICJECE.2021.3093369

  42. [42] Nourani, V., Sharghi, E., Behfar, N., & Zhang, Y. (2022). Multi-step-ahead solar irradiance modeling employing multi-frequency deep learning models and climatic data. Applied energy, 315, 119069. https://doi.org/10.1016/j.apenergy.2022.119069

Published

2025-05-26

How to Cite

Karimidehkordi, F. ., & Samizadeh, R. . (2025). Forecasting Solar Radiation in Diverse Climates in Iran Utilizing Deep Learning Methods. Research Annals of Industrial and Systems Engineering, 2(3), 170-181. https://doi.org/10.22105/raise.vi.67

Similar Articles

11-20 of 20

You may also start an advanced similarity search for this article.