From Theory to Practice: Leveraging DEA and MCDA for Robust Composite Indicator Frameworks in Sustainable Development

Authors

  • Donya Nejatpour Department of Mathematics, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
  • Abdollah Hadi Vencheh Department of Mathematics, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
  • Ali Jamshidi * Department of Mathematics, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.

https://doi.org/10.22105/raise.v1i2.44

Abstract

This study elucidates a novel methodological framework that synergizes Data Envelopment Analysis (DEA) with Multi-Criteria Decision Analysis (MCDA) to critically assess and enhance composite indicator systems in the realm of sustainable development. Through meticulous application to two pivotal sectors in Iran water resource management and renewable energy utilization we demonstrate the framework’s capacity to generate empirical insights that inform policy-making and strategic resource allocation. Utilizing DEA, we quantitatively evaluate the relative efficiencies of these sectors across various provinces, highlighting significant discrepancies in performance outcomes. The results indicate that Tehran attains the foremost efficiency score in renewable energy utilization, underscoring its effective harnessing of resources relative to other provinces. This research not only advances the theoretical discourse surrounding DEA and MCDA integration but also provides a pragmatic template for evaluating sustainability initiatives. By fostering a deeper understanding of operational efficiencies and inefficiencies, the framework developed herein has the potential to guide effective decision-making processes aimed at achieving Sustainable Development Goals (SDGs) in Iran and analogous contexts worldwide.

Keywords:

Data envelopment analysis, Multi-criteria decision analysis, Composite indicator, Sustainability

References

  1. [1] Union, E., & Centre, J. R. (2008). Handbook on constructing composite indicators: Methodology and user guide. OECD. https://B2n.ir/gd8983

  2. [2] LINE, A. O. N. (2008). Handbook on constructing composite indicators. https://B2n.ir/xd9754

  3. [3] Nardo, M., Saisana, M., Saltelli, A., Tarantola, S., Hoffman, A., & Giovannini, E. (2005). Handbook on constructing composite indicators: methodology and user guide. OECD. https://B2n.ir/jx4759

  4. [4] Martín-Gamboa, M., Iribarren, D., García-Gusano, D., & Dufour, J. (2017). A review of life-cycle approaches coupled with data envelopment analysis within multi-criteria decision analysis for sustainability assessment of energy systems. Journal of cleaner production, 150, 164–174. https://doi.org/10.1016/j.jclepro.2017.03.017

  5. [5] Zhou, H., Yang, Y., Chen, Y., & Zhu, J. (2018). Data envelopment analysis application in sustainability: The origins, development and future directions. European journal of operational research, 264(1), 1–16. https://doi.org/10.1016/j.ejor.2017.06.023

  6. [6] Charnes, A., Cooper, W. W., & Rhodes, E. (1979). Measuring the efficiency of decision-making units. European journal of operational research, 3(4), 1–339. https://doi.org/10.1016/0377-2217(78)90138-8

  7. [7] Sarrico, C. S. (2001). Data envelopment analysis: a comprehensive text with models, applications, references and DEA-solver software. Journal of the operational research society, 52(12), 1408–1409. https://doi.org/10.1057/palgrave.jors.2601257

  8. [8] Cook, W. D. (2001). Data envelopment analysis: A comprehensive text with models, applications, references and DEA-solver software. Springer. 88. https://doi.org/10.1007/978-0-387-45283-8

  9. [9] Cooper, W. W., Seiford, L. M., Tone, K., & others. (2007). Data envelopment analysis: a comprehensive text with models, applications, references and DEA-solver software (Vol. 2). Springer. https://doi.org/10.1007/b109347

  10. [10] Kohl, S., Schoenfelder, J., Fügener, A., & Brunner, J. O. (2019). The use of data envelopment analysis (DEA) in healthcare with a focus on hospitals. Health care management science, 22, 245–286. https://doi.org/10.1007/s10729-018-9436-8

  11. [11] Liu, J. S., Lu, L. Y. Y., Lu, W.-M., & Lin, B. J. Y. (2013). A survey of DEA applications. Omega, 41(5), 893–902. https://doi.org/10.1016/j.omega.2012.11.004

  12. [12] Zhang, J., Wu, Q., & Zhou, Z. (2019). A two-stage DEA model for resource allocation in industrial pollution treatment and its application in China. Journal of cleaner production, 228, 29–39. https://doi.org/10.1016/j.jclepro.2019.04.141

  13. [13] Song, M., An, Q., Zhang, W., Wang, Z., & Wu, J. (2012). Environmental efficiency evaluation based on data envelopment analysis: A review. Renewable and sustainable energy reviews, 16(7), 4465–4469. https://doi.org/10.1016/j.rser.2012.04.052

  14. [14] Belton, V., & Stewart, T. (2002). Multiple criteria decision analysis: an integrated approach. Springer science & business media. https://doi.org/10.1007/978-1-4615-1495-4

  15. [15] Govindan, K., Rajendran, S., Sarkis, J., & Murugesan, P. (2015). Multi criteria decision making approaches for green supplier evaluation and selection: a literature review. Journal of cleaner production, 98, 66–83. https://doi.org/10.1016/j.jclepro.2013.06.046

  16. [16] Cicciù, B., Schramm, F., & Schramm, V. B. (2022). Multi-criteria decision making/aid methods for assessing agricultural sustainability: A literature review. Environmental science & policy, 138, 85–96. https://doi.org/10.1016/j.envsci.2022.09.020

  17. [17] Pelissari, R., Khan, S. A., & Ben-Amor, S. (2022). Application of multi-criteria decision-making methods in sustainable manufacturing management: a systematic literature review and analysis of the prospects. International journal of information technology & decision making, 21(02), 493–515. https://doi.org/10.1142/S0219622021300020

  18. [18] Azhar, N. A., Radzi, N. A. M., & Wan Ahmad, W. S. H. M. (2021). Multi-criteria decision making: a systematic review. Recent advances in electrical & electronic engineering (formerly recent patents on electrical & electronic engineering), 14(8), 779–801. https://doi.org/10.2174/2352096514666211029112443

  19. [19] Tzeng, G. H., & Huang, J. J. (2011). Multiple attribute decision making: methods and applications. CRC. https://doi.org/10.1201/b11032

  20. [20] Shao, Q., Weng, S. S., Liou, J. J. H., Lo, H. W., & Jiang, H. (2019). Developing a sustainable urban-environmental quality evaluation system in China based on a hybrid model. International journal of environmental research and public health, 16(8), 1434. https://doi.org/10.3390/ijerph16081434

  21. [21] Arabi, B., Toloo, M., Yang, Z., Zhang, P., & Xu, B. (2024). Sustainable refrigeration technology selection: An innovative DEA-TOPSIS hybrid model. Environmental science & policy, 158, 103780. https://doi.org/10.1016/j.envsci.2024.103780

  22. [22] Kandakoglu, A., Frini, A., & Ben Amor, S. (2019). Multicriteria decision making for sustainable development: A systematic review. Journal of multi-criteria decision analysis, 26(5–6), 202–251. https://doi.org/10.1002/mcda.1682

  23. [23] Wang, H. (2015). A generalized MCDA-DEA (multi-criterion decision analysis-data envelopment analysis) approach to construct slacks-based composite indicator. Energy, 80, 114–122. https://doi.org/10.1016/j.energy.2014.11.051

  24. [24] Allen, C., Metternicht, G., & Wiedmann, T. (2018). Initial progress in implementing the sustainable development goals (SDGs): A review of evidence from countries. Sustainability science, 13, 1453–1467. https://doi.org/10.1007/s11625-018-0572-3

  25. [25] Alexandra T,. Margaret J., & Amanda, J. (2021). Key performance indicators (KPIs) https://B2n.ir/fb1246

  26. [26] Martič, M. M., Novakovič, M. S., & Baggia, A. (2009). Data envelopment analysis-basic models and their utilization. Organizacija, Sciendo. 42(2). 37-43 http://dx.doi.org/10.2478/v10051-009-0001-6

  27. [27] Cherchye, L., Moesen, W., Rogge, N., Van Puyenbroeck, T., Saisana, M., Saltelli, A., Tarantola, S. (2008). Creating composite indicators with DEA and robustness analysis: the case of the Technology Achievement Index. Journal of the operational research society, 59(2), 239–251. https://doi.org/10.1057/palgrave.jors.2602445

  28. [28] Ngor, P.Y., Masrom, S.N., & Rani, R.M. (2023). Discrete-Event Simulation (DES) and Banker, Chames and Cooper Data Envelopment Analysis (BCC-DEA) Models in Improving the Allocation Officers in Outpatient Department. Engineering, Agriculture, Science and Technology Journal (EAST-J). https://doi.org/10.37698/eastj.v2i1.205

Published

2024-08-29

How to Cite

From Theory to Practice: Leveraging DEA and MCDA for Robust Composite Indicator Frameworks in Sustainable Development. (2024). Research Annals of Industrial and Systems Engineering, 1(2), 96-105. https://doi.org/10.22105/raise.v1i2.44

Similar Articles

1-10 of 13

You may also start an advanced similarity search for this article.