From Theory to Practice: Leveraging DEA and MCDA for Robust Composite Indicator Frameworks in Sustainable Development
Abstract
This study elucidates a novel methodological framework that synergizes Data Envelopment Analysis (DEA) with Multi-Criteria Decision Analysis (MCDA) to critically assess and enhance composite indicator systems in the realm of sustainable development. Through meticulous application to two pivotal sectors in Iran water resource management and renewable energy utilization we demonstrate the framework’s capacity to generate empirical insights that inform policy-making and strategic resource allocation. Utilizing DEA, we quantitatively evaluate the relative efficiencies of these sectors across various provinces, highlighting significant discrepancies in performance outcomes. The results indicate that Tehran attains the foremost efficiency score in renewable energy utilization, underscoring its effective harnessing of resources relative to other provinces. This research not only advances the theoretical discourse surrounding DEA and MCDA integration but also provides a pragmatic template for evaluating sustainability initiatives. By fostering a deeper understanding of operational efficiencies and inefficiencies, the framework developed herein has the potential to guide effective decision-making processes aimed at achieving Sustainable Development Goals (SDGs) in Iran and analogous contexts worldwide.
Keywords:
Data envelopment analysis, Multi-criteria decision analysis, Composite indicator, SustainabilityReferences
- [1] Union, E., & Centre, J. R. (2008). Handbook on constructing composite indicators: Methodology and user guide. OECD. https://B2n.ir/gd8983
- [2] LINE, A. O. N. (2008). Handbook on constructing composite indicators. https://B2n.ir/xd9754
- [3] Nardo, M., Saisana, M., Saltelli, A., Tarantola, S., Hoffman, A., & Giovannini, E. (2005). Handbook on constructing composite indicators: methodology and user guide. OECD. https://B2n.ir/jx4759
- [4] Martín-Gamboa, M., Iribarren, D., García-Gusano, D., & Dufour, J. (2017). A review of life-cycle approaches coupled with data envelopment analysis within multi-criteria decision analysis for sustainability assessment of energy systems. Journal of cleaner production, 150, 164–174. https://doi.org/10.1016/j.jclepro.2017.03.017
- [5] Zhou, H., Yang, Y., Chen, Y., & Zhu, J. (2018). Data envelopment analysis application in sustainability: The origins, development and future directions. European journal of operational research, 264(1), 1–16. https://doi.org/10.1016/j.ejor.2017.06.023
- [6] Charnes, A., Cooper, W. W., & Rhodes, E. (1979). Measuring the efficiency of decision-making units. European journal of operational research, 3(4), 1–339. https://doi.org/10.1016/0377-2217(78)90138-8
- [7] Sarrico, C. S. (2001). Data envelopment analysis: a comprehensive text with models, applications, references and DEA-solver software. Journal of the operational research society, 52(12), 1408–1409. https://doi.org/10.1057/palgrave.jors.2601257
- [8] Cook, W. D. (2001). Data envelopment analysis: A comprehensive text with models, applications, references and DEA-solver software. Springer. 88. https://doi.org/10.1007/978-0-387-45283-8
- [9] Cooper, W. W., Seiford, L. M., Tone, K., & others. (2007). Data envelopment analysis: a comprehensive text with models, applications, references and DEA-solver software (Vol. 2). Springer. https://doi.org/10.1007/b109347
- [10] Kohl, S., Schoenfelder, J., Fügener, A., & Brunner, J. O. (2019). The use of data envelopment analysis (DEA) in healthcare with a focus on hospitals. Health care management science, 22, 245–286. https://doi.org/10.1007/s10729-018-9436-8
- [11] Liu, J. S., Lu, L. Y. Y., Lu, W.-M., & Lin, B. J. Y. (2013). A survey of DEA applications. Omega, 41(5), 893–902. https://doi.org/10.1016/j.omega.2012.11.004
- [12] Zhang, J., Wu, Q., & Zhou, Z. (2019). A two-stage DEA model for resource allocation in industrial pollution treatment and its application in China. Journal of cleaner production, 228, 29–39. https://doi.org/10.1016/j.jclepro.2019.04.141
- [13] Song, M., An, Q., Zhang, W., Wang, Z., & Wu, J. (2012). Environmental efficiency evaluation based on data envelopment analysis: A review. Renewable and sustainable energy reviews, 16(7), 4465–4469. https://doi.org/10.1016/j.rser.2012.04.052
- [14] Belton, V., & Stewart, T. (2002). Multiple criteria decision analysis: an integrated approach. Springer science & business media. https://doi.org/10.1007/978-1-4615-1495-4
- [15] Govindan, K., Rajendran, S., Sarkis, J., & Murugesan, P. (2015). Multi criteria decision making approaches for green supplier evaluation and selection: a literature review. Journal of cleaner production, 98, 66–83. https://doi.org/10.1016/j.jclepro.2013.06.046
- [16] Cicciù, B., Schramm, F., & Schramm, V. B. (2022). Multi-criteria decision making/aid methods for assessing agricultural sustainability: A literature review. Environmental science & policy, 138, 85–96. https://doi.org/10.1016/j.envsci.2022.09.020
- [17] Pelissari, R., Khan, S. A., & Ben-Amor, S. (2022). Application of multi-criteria decision-making methods in sustainable manufacturing management: a systematic literature review and analysis of the prospects. International journal of information technology & decision making, 21(02), 493–515. https://doi.org/10.1142/S0219622021300020
- [18] Azhar, N. A., Radzi, N. A. M., & Wan Ahmad, W. S. H. M. (2021). Multi-criteria decision making: a systematic review. Recent advances in electrical & electronic engineering (formerly recent patents on electrical & electronic engineering), 14(8), 779–801. https://doi.org/10.2174/2352096514666211029112443
- [19] Tzeng, G. H., & Huang, J. J. (2011). Multiple attribute decision making: methods and applications. CRC. https://doi.org/10.1201/b11032
- [20] Shao, Q., Weng, S. S., Liou, J. J. H., Lo, H. W., & Jiang, H. (2019). Developing a sustainable urban-environmental quality evaluation system in China based on a hybrid model. International journal of environmental research and public health, 16(8), 1434. https://doi.org/10.3390/ijerph16081434
- [21] Arabi, B., Toloo, M., Yang, Z., Zhang, P., & Xu, B. (2024). Sustainable refrigeration technology selection: An innovative DEA-TOPSIS hybrid model. Environmental science & policy, 158, 103780. https://doi.org/10.1016/j.envsci.2024.103780
- [22] Kandakoglu, A., Frini, A., & Ben Amor, S. (2019). Multicriteria decision making for sustainable development: A systematic review. Journal of multi-criteria decision analysis, 26(5–6), 202–251. https://doi.org/10.1002/mcda.1682
- [23] Wang, H. (2015). A generalized MCDA-DEA (multi-criterion decision analysis-data envelopment analysis) approach to construct slacks-based composite indicator. Energy, 80, 114–122. https://doi.org/10.1016/j.energy.2014.11.051
- [24] Allen, C., Metternicht, G., & Wiedmann, T. (2018). Initial progress in implementing the sustainable development goals (SDGs): A review of evidence from countries. Sustainability science, 13, 1453–1467. https://doi.org/10.1007/s11625-018-0572-3
- [25] Alexandra T,. Margaret J., & Amanda, J. (2021). Key performance indicators (KPIs) https://B2n.ir/fb1246
- [26] Martič, M. M., Novakovič, M. S., & Baggia, A. (2009). Data envelopment analysis-basic models and their utilization. Organizacija, Sciendo. 42(2). 37-43 http://dx.doi.org/10.2478/v10051-009-0001-6
- [27] Cherchye, L., Moesen, W., Rogge, N., Van Puyenbroeck, T., Saisana, M., Saltelli, A., Tarantola, S. (2008). Creating composite indicators with DEA and robustness analysis: the case of the Technology Achievement Index. Journal of the operational research society, 59(2), 239–251. https://doi.org/10.1057/palgrave.jors.2602445
- [28] Ngor, P.Y., Masrom, S.N., & Rani, R.M. (2023). Discrete-Event Simulation (DES) and Banker, Chames and Cooper Data Envelopment Analysis (BCC-DEA) Models in Improving the Allocation Officers in Outpatient Department. Engineering, Agriculture, Science and Technology Journal (EAST-J). https://doi.org/10.37698/eastj.v2i1.205