Applying the DEA Model to Evaluate FPGA Devices Running AES Algorithm: A KNIME-Based Approach

Authors

  • Muhamad Ali Haji Soltani * Department of Law, Shahid Beheshti University, Tehran, Iran.
  • Mehdi Navaei Leilan Shahid Beheshti University, Tehran, Iran.

https://doi.org/10.22105/raise.v1i4.64

Abstract

The effectiveness of Advanced Encryption Standard (AES) algorithm implementations on Field Programming Gate Array (FPGA) circuits is examined in this paper using Data Envelopment Analysis (DEA). DEA offers insights beyond conventional ratio analysis by examining various input-output scenarios, locating optimal practices, and maximizing resource allocation. We evaluate different implementations using the Charnes, Cooper, and Rhodes (CCR) model in the KNIME framework, emphasizing the significance of ongoing hardware security enhancement to address changing data protection concerns.

Keywords:

Data envelopment analysis, Advanced encryption standard, Field programming gate array, KNIME

References

  1. [1] Bowlin, W. F. (1998). Measuring performance: An introduction to data envelopment analysis (DEA). The journal of cost analysis, 15(2), 3–27. https://doi.org/10.1080/08823871.1998.10462318

  2. [2] Yassein, M. B., Aljawarneh, S., Qawasmeh, E., Mardini, W., & Khamayseh, Y. (2017). Comprehensive study of symmetric key and asymmetric key encryption algorithms. 2017 international conference on engineering and technology (ICET) (pp. 1–7). IEEE. https://doi.org/10.1109/ICEngTechnol.2017.8308215

  3. [3] Ruiz-Rosero, J., Ramirez-Gonzalez, G., & Khanna, R. (2019). Field programmable gate array applications—A scientometric review. Computation, 7(4), 63. https://doi.org/10.3390/computation7040063

  4. [4] Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European journal of operational research, 2(6), 429–444. https://doi.org/10.1016/0377-2217(78)90138-8

  5. [5] Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management science, 30(9), 1078–1092. https://doi.org/10.1287/mnsc.30.9.1078

  6. [6] Hajisoltani, M., Salarifard, R., & Soleimany, H. (2022). Secure and low-area implementation of the AES using FPGA. Journal of information security, 14(3), 93–99. https://doi.org/10.22042/isecure.2022.14.3.0

  7. [7] Shahmirzadi, A. R., Božilov, D., & Moradi, A. (2021). New first-order secure AES performance records. Cryptology eprint archive, 2021(2), 304–327. https://doi.org/10.46586/tches.v2021.i2.304-327

  8. [8] Güneysu, T., & Moradi, A. (2011). Generic side-channel countermeasures for reconfigurable devices. Cryptographic hardware and embedded systems-ches 2011 (pp. 33–48). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-23951-9_3

  9. [9] Shahmirzadi, A. R., & Moradi, A. (2021). Re-consolidating first-order masking schemes: Nullifying fresh randomness. IACR transactions on cryptographic hardware and embedded systems, 2021(1), 305–342. https://doi.org/10.46586/tches.v2021.i1.305-342

  10. [10] Delen, D. (2024). Landscape of tools for business analytics and data science--a tutorial on knime. Proceedings of the 2024 pre-icis sigdsa symposium. AIS Electronic Library (AISeL). https://aisel.aisnet.org/sigdsa2024/21

Published

2024-10-11

How to Cite

Applying the DEA Model to Evaluate FPGA Devices Running AES Algorithm: A KNIME-Based Approach. (2024). Research Annals of Industrial and Systems Engineering, 1(4), 236–243. https://doi.org/10.22105/raise.v1i4.64

Similar Articles

1-10 of 28

You may also start an advanced similarity search for this article.