Redesigning the Wheat and Flour Supply Chain Network Under Uncertainty: A Case Study of Iran

Authors

  • Sepehr Safaei * Industrial Engineering (MSc) Sharif University of Technology, Tehran, Iran.
  • Maryam Rezapour Niari Industrial Engineering (Assistant Professor) Sharif University of Technology Tehran, Iran.

https://doi.org/10.22105/raise.vi.68

Abstract

Supply chains are increasingly affected by internal and external factors such as floods, earthquakes, war, and sanctions, creating significant uncertainty. The wheat and flour supply chain directly impacts household diets, and any disruption can lead to severe social, political, and economic consequences. This study presents a mixed-integer linear programming (MILP) model to minimize total costs. The model addresses a multi-product, multi-period problem that includes seven levels: farms, import points, silos (if construction), flour production plants, warehouses, and both essential and non-essential customers. To account for uncertainty, a two-stage stochastic programming approach is applied. In the first stage, the model identifies the optimal locations for silo construction. In the second stage, it optimizes the flow of goods across the network based on different scenarios. The results show the ideal locations for silo construction, the required import volume for each scenario, and flour shortages for non-essential customers, ultimately helping reduce dependency on imports for essential goods.

Keywords:

Supply Chain Network Redesign, Wheat and Flour Integrated Network Design, Wheat Import Planning, Two-Stage Stochastic Programming, Location and Allocation

References

  1. [1] - Gholamian, M. R., & Taghanzadeh, A. H. (2017). Integrated network design of wheat supply chain: A real case of Iran. Computers and Electronics in Agriculture, 140, 139-147.

  2. [2] - Hosseini-Motlagh, S.-M., Samani, M. R. G., & Saadi, F. A. (2020). A novel hybrid approach for synchronized development of sustainability and resiliency in the wheat network. Computers and Electronics in Agriculture, 168, 105095.

  3. [3] - Thakur, M., Wang, L., & Hurburgh, C. R. (2010). A multi-objective optimization approach to balancing cost and traceability in bulk grain handling. Journal of Food Engineering, 101(2), 193-200.

  4. [4] - Asgari, N., Farahani, R. Z., Rashidi-Bajgan, H., & Sajadieh, M. S. (2013). Developing model-based software to optimise wheat storage and transportation: A real-world application. Applied Soft Computing, 13(2), 1074-1084.

  5. [5] - Craige, C. C., Buser, M. D., Frazier, R. S., Hiziroglu, S. S., Holcomb, R. B., & Huhnke, R. L. (2016). Conceptual design of a biofeedstock supply chain model for eastern redcedar. Computers and Electronics in Agriculture, 121, 12-24. doi:https://doi.org/10.1016/j.compag.2015.11.019

  6. [6] - Ghezavati, V., Hooshyar, S., & Tavakkoli-Moghaddam, R. (2017). A Benders’ decomposition algorithm for optimizing distribution of perishable products considering postharvest biological behavior in agri-food supply chain: a case study of tomato. Central European Journal of Operations Research, 25, 29-54.

  7. [7] - Cárdenas-Barrón, L. E., González-Velarde, J. L., Treviño-Garza, G., & Garza-Nuñez, D. (2019). Heuristic algorithm based on reduce and optimize approach for a selective and periodic inventory routing problem in a waste vegetable oil collection environment. International journal of production economics, 211, 44-59. doi:https://doi.org/10.1016/j.ijpe.2019.01.026

  8. [8] - Amorim, P., Curcio, E., Almada-Lobo, B., Barbosa-Póvoa, A. P. F. D., & Grossmann, I. E. (2016). Supplier selection in the processed food industry under uncertainty. European journal of operational research, 252(3), 801-814. doi:https://doi.org/10.1016/j.ejor.2016.02.005

  9. [9] - Mogale, D. G., Dolgui, A., Kandhway, R., Kumar, S. K., & Tiwari, M. K. (2017). A multi-period inventory transportation model for tactical planning of food grain supply chain. Computers & Industrial Engineering, 110, 379-394. doi:https://doi.org/10.1016/j.cie.2017.06.008

  10. [10] - Flynn, B. B., Koufteros, X., & Lu, G. (2016). On theory in supply chain uncertainty and its implications for supply chain integration. Journal of Supply Chain Management, 52(3), 3-27.

  11. [11] - Yazdani, M., Wang, Z., & Chan, F. T. (2020). A decision support model based on the combined structure of DEMATEL, QFD and fuzzy values. Soft Computing, 24(16), 12449-12468.

  12. [12] - Jarernsuk, S., & Phruksaphanrat, B. (2019). Supply chain for perishable agriculture products by possibilistic linear programming. Paper presented at the 2019 IEEE 6th International Conference on Industrial Engineering and Applications (ICIEA).

  13. [13] - Meena, S. R., Meena, S. D., Pratap, S., Patidar, R., & Daultani, Y. (2019). Strategic analysis of the Indian agri-food supply chain. Opsearch, 56(3), 965-982.

  14. [14] - Cruz, L., Pires-Ribeiro, J., & Barbosa-Póvoa, A. (2019). Design and Planning of Agri-Food Supply Chains. In A. A. Kiss, E. Zondervan, R. Lakerveld, & L. Özkan (Eds.), Computer Aided Chemical Engineering (Vol. 46, pp. 55-60): Elsevier.

  15. [15] - Govindan, K., Fattahi, M., & Keyvanshokooh, E. (2017). Supply chain network design under uncertainty: A comprehensive review and future research directions. European journal of operational research, 263(1), 108-141. doi:https://doi.org/10.1016/j.ejor.2017.04.009

  16. [16] - Motevalli-Taher, F., Paydar, M. M., & Emami, S. (2020). Wheat sustainable supply chain network design with forecasted demand by simulation. Computers and Electronics in Agriculture, 178, 105763.

  17. [17] - Hosseini-Motlagh, S.-M., Samani, M. R. G., & Abbasi Saadi, F. (2021). Strategic optimization of wheat supply chain network under uncertainty: a real case study. Operational research, 21(3), 1487-1527.

  18. [18] - Mogale, D., Kumar, M., Kumar, S. K., & Tiwari, M. K. (2018). Grain silo location-allocation problem with dwell time for optimization of food grain supply chain network. Transportation Research Part E: Logistics and Transportation Review, 111, 40-69.

  19. [19] - Albertzeth, G., Pujawan, I. N., Hilletofth, P., & Tjahjono, B. (2020). Mitigating transportation disruptions in a supply chain: a cost-effective strategy. International Journal of Logistics Research and Applications, 23(2), 139-158.

  20. [20] - Gholamian, M. R., & Taghanzadeh, A. (2019). An Integrated Bread Flour Supply Chain Model considering Import, Storage, Production and Distribution Planning. Iranian Journal of Agricultural Economics and Development Research, 50(1), 65-78.

  21. [21] - Djuric, I., & Götz, L. (2016). Export restrictions–Do consumers really benefit? The wheat-to-bread supply chain in Serbia. Food Policy, 63, 112-123.

  22. [22] - Trisna, T., Marimin, M., Arkeman, Y., & Sunarti, T. C. (2020). Fuzzy multi-objective optimization for wheat flour supply chain considering raw material substitution. International Journal of Industrial Engineering and Management, 11(3), 180-191.

  23. [23] - Kulak, M., Nemecek, T., Frossard, E., & Gaillard, G. (2016). Eco-efficiency improvement by using integrative design and life cycle assessment. The case study of alternative bread supply chains in France. Journal of cleaner production, 112, 2452-2461.

  24. [24] - Zokaee, S., Jabbarzadeh, A., Fahimnia, B., & Sadjadi, S. J. (2017). Robust supply chain network design: an optimization model with real world application. Annals of Operations Research, 257, 15-44.

  25. [25] - De Boni, A., Pasqualone, A., Roma, R., & Acciani, C. (2019). Traditions, health and environment as bread purchase drivers: A choice experiment on high-quality artisanal Italian bread. Journal of cleaner production, 221, 249-260.

  26. [26] - Mogale, D., Dolgui, A., Kandhway, R., Kumar, S. K., & Tiwari, M. K. (2017). A multi-period inventory transportation model for tactical planning of food grain supply chain. Computers & Industrial Engineering, 110, 379-394.

  27. [27] - Chávez, M. M. M., Sarache, W., & Costa, Y. (2018). Towards a comprehensive model of a biofuel supply chain optimization from coffee crop residues. Transportation Research Part E: Logistics and Transportation Review, 116, 136-162.

  28. [28] - Essien, E., Dzisi, K., & Addo, A. (2018). Decision support system for designing sustainable multi-stakeholder networks of grain storage facilities in developing countries. Computers and Electronics in Agriculture, 147, 126-130.

  29. [29] - Naderi, B., Govindan, K., & Soleimani, H. (2020). A Benders decomposition approach for a real case supply chain network design with capacity acquisition and transporter planning: wheat distribution network. Annals of Operations Research, 291, 685-705.

  30. [30] - Navazi, F., Sazvar, Z., & Tavakkoli-Moghaddam, R. (2023). A sustainable closed-loop location-routing-inventory problem for perishable products. Scientia Iranica, 30(2), 757-783.

  31. [31] - Babazadeh, R., & Shamsi, M. (2022). Green design of regional wheat supply chains under uncertainty. Scientia Iranica.

  32. [32] - Seydanlou, P., Jolai, F., Tavakkoli-Moghaddam, R., & Fathollahi-Fard, A. M. (2022). A multi-objective optimization framework for a sustainable closed-loop supply chain network in the olive industry: Hybrid meta-heuristic algorithms. Expert Systems with Applications, 203, 117566.

  33. [33] - Olfati, M., & Paydar, M. M. (2023). Towards a responsive-sustainable-resilient tea supply chain network design under uncertainty using big data. Socio-Economic Planning Sciences, 88, 101646.

  34. [34] - Yousefi-Babadi, A., Bozorgi-Amiri, A., Tavakkoli-Moghaddam, R., & Govindan, K. (2023). Redesign of the sustainable wheat-flour-bread supply chain network under uncertainty: An improved robust optimization. Transportation Research Part E: Logistics and Transportation Review, 176, 103215.

  35. [35] - Rahbari, M., Arshadi Khamseh, A., & Sadati-Keneti, Y. (2024). Resilience strategies in coping to disruptions of wheat supply chain caused by the Russia–Ukraine war crisis: case study from an emerging economy. Kybernetes, 53(10), 2984-3018.

  36. [36] - Sharifi, E., Amin, S. H., & Fang, L. (2024). Designing a sustainable, resilient, and responsive wheat supply chain under mixed uncertainty: A multi-objective approach. Journal of cleaner production, 434, 140076.

  37. [37] - Safaei, S., & Rezapour Nari, M. (1403). A Supply Chain Network Design Model for Wheat and Flour: Integrating Domestic Consumption, Imports, Storage,Production, and Distribution; Case Study Iran. Paper presented at the دهمین کنفرانس بین المللی مهندسی صنایع و سیستم­ ها. https://civilica.com/doc/2119440

  38. [38] - فرازمند, م., & پیشوایی, م. س. (2018). مدل طراحی شبکه حمل‌ونقل ترکیبی تحت شرایط عدم قطعیت (موردمطالعه: حمل‌ونقل سیمان در کشور ایران). چشم‌انداز مدیریت صنعتی, 8(3), 115-139.

Published

2025-08-09

Issue

Section

Articles

How to Cite

Safaei, S. ., & Rezapour Niari, M. . (2025). Redesigning the Wheat and Flour Supply Chain Network Under Uncertainty: A Case Study of Iran. Research Annals of Industrial and Systems Engineering. https://doi.org/10.22105/raise.vi.68

Similar Articles

11-18 of 18

You may also start an advanced similarity search for this article.